It is shown that a lossless first-order optical system whose real symplectic ray transformation matrix can be diagonalized and has only real eigenvalues, is similar to a separable hyperbolic expander in the sense that the respective ray transformation matrices are related by means of a similarity transformation. Moreover, it is shown how eigenfunctions of such a system can be determined, based on the fact that simple powers are eigenfunctions of a separable magnifier. As an example, a set of eigenfunctions of a hyperbolic expander is determined and the resemblance between these functions and the well-known Hermite-Gauss modes is exploited.

PDF version of the full paper

doi:10.1016/j.optcom.2006.11.003

To: Papers by Martin J. Bastiaans