Time-frequency signal analysis based on the windowed fractional Fourier transform

LJubisa Stankovic, Tatiana Alieva, and Martin J. Bastiaans

A new signal-adaptive joint time-frequency distribution for the analysis of nonstationary signals is proposed. It is based on a fractional-Fourier-domain realization of the weighted Wigner distribution producing auto-terms close to the ones in the Wigner distribution itself, but with reduced cross-terms. Improvement over the standard time-frequency representations is achieved when the principal axes of a signal (defined as mutually orthogonal directions in the time-frequency plane for which the width of the signalís fractional power spectrum is minimum or maximum) do not correspond to time and frequency. The computational cost of this fractional-domain realization is the same as the computational cost of the realizations in the time or the frequency domain, since the windowed Fourier transform of the fractional Fourier transform of a signal corresponds to the short-time Fourier transform of the signal itself, with the window being the fractional Fourier transform of the initial one. The appropriate fractional domain is found from the knowledge of three second-order fractional Fourier transform moments. Numerical simulations confirm a qualitative dvantage in the time-frequency representation, when the calculation is done in the optimal fractional domain. The approach can be generalized to the time-frequency distributions from the Cohen class.

PDF version of the full paper

To: Papers by Martin J. Bastiaans