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Gabor’s expansion and the Zak transform
for continuous-time and discr ete-time signals:
Critical sampling and rational over sampling

Martin J. Bastiaans

Abstract

Gabor’s expansion of asignal into a discrete set of shifted and modulated versions
of an elementary signal is introduced and its relation to sampling of the sliding-
window spectrum isshown. It isshown how Gabor’s expansion coefficients can be
found as samples of the diding-window spectrum, where — at least in the case of
critical sampling —the window function is related to the elementary signal in such
away that the set of shifted and modulated elementary signas is bi-orthonormal
to the corresponding set of window functions.

The Zak transform isintroduced and itsintimate rel ationship to Gabor’s signa
expansion is demonstrated. It is shown how the Zak transform can be helpful in
determining the window function that corresponds to a given elementary signa
and how it can be used to find Gabor’s expansion coefficients.

The continuous-time as well as the discrete-time case are considered, and, by
sampling the continuous frequency variable that still occurs in the discrete-time
case, the discrete Zak transform and the discrete Gabor transform are introduced.
It is shown how the discrete transforms enabl e us to determine Gabor’s expansion
coefficientsviaafast computer a gorithm, anal ogousto thewell-known fast Fourier
transform agorithm.

Not only Gabor’s critical sampling is considered, but a so the case of oversam-
pling by a rational factor. An arrangement is described which is able to generate
Gabor’s expansion coefficients of a rastered, one-dimensional signal by coherent-
optical means.
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1 Introduction

It is sometimes convenient to describe a time signa ¢(t), say, not in the time
domain, but in the frequency domain by means of its frequency spectrum, i.e., the
Fourier transform@(w) of the function ¢(t), which is defined by

G(w) = / p®e i@t (11)

abar ontop of asymbol will mean throughout that we are dealing with afunctionin
the frequency domain. (Unless otherwise stated, all integrations and summeations
in this paper extend from —oo to +00.) The inverse Fourier transformation takes
the form

2

Thefrequency spectrum shows usthe global distribution of the energy of the signal
asafunction of frequency. However, oneisoften moreinterested in the momentary
or local distribution of the energy as a function of frequency.

The need for alocal frequency spectrum arisesin several disciplines. It arises
inmusic, for instance, whereasignal isusually described not by atimefunction nor
by the Fourier transform of that function, but by its musical score; indeed, when a
composer writes a score, he prescribes the frequencies of the tones that should be
present at acertain moment. It arisesin optics. geometrical opticsisusually treated
intermsof rays, and thesignal isdescribed by givingthedirections(cf. frequencies)
of therays (cf. tones) that should be present at a certain position (cf. time moment).
It arises aso in mechanics, where the position and the momentum of a particle
are given simultaneoudly, leading to a description of mechanical phenomenain a
phase space.

A candidate for alocal frequency spectrum is Gabor’s signal expansion. In
1946 Gabor [15] suggested the expansion of asignal into adiscrete set of properly
shifted and modul ated Gaussian el ementary signals|[5, 6, 7, 15, 16, 17]. A quotation
from Gabor’s origina paper might be useful. Gabor writes in the summary:

o(t) = i/@(w)ej olgy,, (1.2)

Hitherto communi cation theory was based on two aternative methods
of signal analysis. Oneisthe description of the signal as afunction of
time; the other is Fourier analysis. ... But our everyday experiences
. insist on a description in terms of both time and frequency.
Signals are represented in two dimensions, with time and frequency
as co-ordinates. Such two-dimensional representations can be called
‘informationdiagrams,’ asareasinthem areproportional to thenumber
of independent data which they can convey. ... There are certain
‘elementary signals’ which occupy the smallest possible area in the
information diagram. They are harmonic oscillations modulated by
a probability pulse. Each elementary signal can be considered as
conveying exactly one datum, or one ‘ quantum of information.” Any
signal can be expanded in terms of these by a process which includes
time analysis and Fourier analysis as extreme cases.



Although Gabor restricted himself to an elementary signa that had a Gaussian
shape, his signa expansion holds for rather arbitrarily shaped elementary signals
[5, 6, 7].

We will restrict ourselves to one-dimensiona time signals; the extension to
two or more dimensions, however, is rather straightforward. Most of the results
can be applied to continuous-time as well as discrete-time signals. We will treat
continuous-timesignalsin Sections 2, 3, and 4 (and also in Sections 7 and 9), and
wewill transfer the conceptsto the discrete-time case in Sections 5 and 6 (and also
in Section 8). To distinguish continuous-time from discrete-time signal's, we will
denote the former with curved brackets and the latter with square brackets; thus
@(t) isacontinuous-timeand ¢[n] adiscrete-timesigna. Wewill usethe variables
in aconsistent manner: in the continuous-time case, the variablest, mand T have
something to do with time, the variables w, k and 2 have something to do with
frequency, and therelation QT = 2 holds throughout; in the discrete-time case,
the variablesn, mand N have something to do with time, the variables 9, k and ®
have something to do with frequency, and therelation ® N = 2z holdsthroughout.

In hisoriginal paper, Gabor restricted himself to acritical sampling of thetime-
frequency domain; thisis the case that we consider in Sections 2-6. In Section 2
we introduce Gabor's signal expansion, we introduce a window function with the
help of which the expansion coefficients can be found, and we show a way how,
a least in principle, this window function can be determined. In Section 3 we
introduce the Zak transform and we use this transform to determine the window
function that corresponds to a given elementary signal in a mathematically more
attractive way. A more genera application of the Zak transform to Gabor’s signa
expansion is described in Section 4. We tranglate the concepts of Gabor’s signal
expansion and the Zak transform to discrete-time signalsin Section 5. In Section
6, we introduce — on the analogy of the well-known discrete Fourier transform —a
discrete version of the Zak transform; the discrete versions of the Fourier and the
Zak transform enabl e us to determine Gabor’s expansion coefficients by computer
viaafast computer agorithm.

In Section 7 we extend Gabor’s concepts to the case of oversampling, in
particular oversampling by arational factor. We use the Fourier transform and the
Zak transform again to transform Gabor's signal expansion into a mathematically
more attractive form and we show how a window function can be determined in
this case of oversampling by arational factor. In Section 8 the discrete Gabor and
Zak transforms are considered again, but now with oversampling.

Finally, in Section 9, we will introduce an optical arrangement whichisableto
generate Gabor's expansion coefficients of a rastered, one-dimensiona signal by
coherent-optica means.



2 Gabor’ssignal expansion

Let us consider an elementary signal g(t), which may or may not have a Gaussian
shape. Gabor’s origina choice was a Gaussian [15],

g(t) = 2te M/ T, 2.1

where we have added the factor 23 to normalize (1/T) [ g(t)|?dt to unity, but in
this paper the elementary signa may have a rather arbitrary shape; we will use
Gabor’s choice of a Gaussian-shaped elementary signal as an example only. From
the elementary signal g(t), we construct a discrete set of shifted and modulated
versions gn(t) defined by

Gri(t) = g(t —mT)el K2, 2.2)

wherethetimeshift T and the frequency shift Q2 satisfy therelationship QT = 27,
and where m and k may take al integer values. Gabor stated in 1946 that any
reasonably well-behaved signa ¢(t) can be expressed in the form

e®) =YY angm(t), (2.3)
m k

with properly chosen coefficients a,x. ThusGabor’ssignal expansion representsa
signal ¢(t) asa superposition of properly shifted (over discrete distancesmT) and
modul ated (with discrete frequencies kS2) versions of an elementary signal g(t).
We note that there existsa completely dual expression in the frequency domain; in
this paper, however, we will concentrate on the time-domain description.

Gabor’s signal expansion is related to the degrees of freedom of asignal: each
expansion coefficient a., represents one complex degree of freedom [8, 15]. If
asignad is, roughly, limited to the space interva |t| < %a and to the frequency
interva |w| < %b, the number of complex degrees of freedom equals the number
of Gabor coefficients in the time-frequency rectangle with area ab, this number
being approximately equal to the time-bandwidth product ab/2s. The reason for
Gabor to choose a Gaussian-shaped elementary signal was that for such a signal
each shifted and modul ated version, which conveys exactly one degree of freedom,
occupies the smallest possible area in the time-frequency domain. Indeed, if
we choose the elementary signal according to Eq. (2.1), the ‘duration’ of such a
signa and the ‘duration’ of its Fourier transform — defined as the sgquare roots of
their normalized second-order moments (see [24], Sect. 8-2) —read T/2,/7 and
Q/2./m, respectively, and their product takes the minimum value %

Two specia choices of the elementary signal might beinstructive. If we choose
a rectangular-shaped elementary signal such that g(t) = 1 for —3T <t < 3T
and g(t) = 0 outside that time interval, then Gabor’s signal expansion has an
easy interpretation: we simply consider the signal ¢(t) in successivetimeintervals
of length T and describe the signal in each time interval by means of a Fourier
series. In the case of asinc-shaped elementary signa g(t) = sin(zxt/T)/(zt/T)
—and hence §(w) = T for —2Q < w < 1Q and §(w) = 0 outside that frequency
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interval — Gabor’'s signal expansion has again an easy interpretation: we simply
consider the signal in successive frequency intervals of length  and describe the
signal in each frequency interval by means of the well-known sampling theorem
for band-limited signals.

For the rectangular- or sinc-shaped elementary signals considered in the previ-
ous paragraph, the discrete set of shifted and modulated versions of the elementary
signal g« (t) isorthonormal; in general, however, this need not be the case, which
impliesthat Gabor’s expansion coefficients a,x cannot be determined in the usual
way. Let us consider two elements g« (t) and g, (t) from the (possibly non-
orthonormal) set of shifted and modulated versions of the elementary signal, and
let their inner product be denoted by d,_,_«; hence

/ 0 (DGt = G = 0. (2.4

It is easy to see that for Gabor’s choice of a Gaussian e ementary signal the array
Ok takesthe form

1 2 2
Oye = T(—=1)mke— 27 (M + K. (2.5)

which doesnot havetheform of aproduct of two Kronecker deltas T4,k ; therefore,
the set of shifted and modulated versions of a Gaussian el ementary signa is not
orthonormal.

Gabor’s expansion coefficients can easily be found, even in the case of a non-
orthonormal set g« (t), if we could find a window function w(t) such that

Bk = f o Ol b, (26)

where we have used, again, the short-hand notation [cf. Eq. (2.2)]

wo(t) = w(t — mT)el KL,

Such awindow function should satisfy the two bi-orthonormality conditions|[5, 6,
7]

f Wy ()G DAt = 818 2.7)

and
DN Wit Gmi(tz) = 8ty — to); 2.8)
m k

we will show later that the first bi-orthonormality condition implies the second
one, so we can concentrate on the first one. The first bi-orthonormality condition
guarantees that if we start with an array of coefficients a,, construct asigna ¢ (t)
viaEqg. (2.3) and subsequently substitutethis signa into Eq. (2.6), we end up with
the original coefficients array; the second bi-orthonormality condition guarantees
that if we start with a certain signa ¢(t), construct its Gabor coefficients a., via
Eq. (2.6) and subsequently substitute these coefficients into Eq. (2.3), we end up
with the original signal. We thus conclude that the two equations (2.3) and (2.6)
form atransformpair.



We remark that Eq. (2.6), with the help of which we can determine Gabor’'s
expansion coefficients, is, in fact, a sampled version of the dliding-window spec-
trum[7, 10] (or complex spectrogram, or windowed Fourier transform, or short-
time Fourier transform), where the sampling appears on the time-frequency lattice
(mT, k2) with QT = 27. In quantum mechanics this|attice is known as the Von
Neumann lattice[4, 21], but for obviousreasonswe prefer to call it the Gabor lattice
inthe context of thispaper. Hence, whereas sampling the sliding-window spectrum
yields the Gabor coefficients, Gabor’'s signal expansion itself can be considered
as away to reconstruct asignal from its sampled sliding-window spectrum. The
name window function for thefunction w(t) that correspondsto a given el ementary
signal g(t) will thus be clear.

It iseasy to seethat thewindow function w(t) isproportiona to the elementary
signa g(t) if the set g.«(t) is orthonormal. In the remainder of this section we
show a first way in which a window function can be found if the set g.(t) is
non-orthonormal. We therefore express the window function w(t) by means of its
Gabor expansion [cf. EQ. (2.3)] with expansion coefficients Cy, say [5],

w®) =" CuGnk(t) (2.9)
m k

and try to find the array of coefficients ¢,x. We therefore consider the first bi-
orthonormality condition (2.7)

Smbk = /w*(t)gmk(t)dt

and substitute from the Gabor expansion (2.9) for the window function, yielding

S = f [ZZc:.g:.a)} Gmc(D)dlt.
n |

We rearrange factors

St =33 ¢ / 05 (O gDt
n |
and substitute from Eq. (2.4)

dmbx = Z Z C:| dn—m,l—k = Z C:I d:]—n,k—l :
|

n n |

Thefirst bi-orthonormality relation thus leads to the condition
Z Z Cri Om—nkt = Smbk., (2.10)
n |

in which the left-hand side has the form of a convolution of the given array d
with the array ¢, that we have to determine. Equation (2.10) can be solved, in
principle, when we introduce the Fourier transform of the arrays according to

(L o —j (Mo T — kQt - _
d(?,ﬁ):;;dmke J( ) withQT =27), (211
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and asimilar expression for C(t/ T, w/2). Note that these Fourier transforms are
periodic in thetime variable t and the frequency variable w with periods T and €2,

Hence, in considering such Fourier transforms we can restrict ourselves to the
fundamental Fourier interval (—3T <t < 3T, —2Q < o < 1Q). Theinverse
Fourier transformation reads

1 _ .
Qo = 5= f f d G %) el (MoT —kQ g, (2.13)
TJQ

and a similar expression for Cy; fT -dt and fQ -dw denote integrations over one
period T and €2, respectively. After Fourier transforming both sides of Eqg. (2.10),
the convolution transforms into a product, and Eqg. (2.10) takes the form

[t o\s(l

The function €t/ T, w/2) can easily be found from the latter relationship, pro-
vided that the inverse of d(t/T, w/ Q) exists, and inverse Fourier transforming
Ct/T, w/ Q) [cf. Eq. (2.13)] then resultsin the array ¢, that we are looking for.

L et us consider how thingswork out for Gabor’s choice of a Gaussian elemen-
tary signal. After Fourier transforming the array (2.5) we get

1-
?d <% %) = 03(Q1)03(w T) +03(Q20)O2(w T) + 02(21)03(w T) — O2(21) 0o (w0 T),
(2.15)
with ,
0x(2) = Oa(z; € %) = e 2T M el 2M2 (2.16)
and Ly
62(2) = bp(z; &%) = Y e ZTMF ) el @M+ 1)z, (2.17)

Thefunctions 6 (z; e ") are known as theta functions[1, 31] with nomee2". The
Fourier transform (1/T)d(t/ T, w/ ) has been depicted in Fig. 1, where we have
restricted ourselves to the fundamental Fourier interval.

Notethat thevaluesof (1/T)d(t/T, w/Q) for (t = 3T +mT, w0 = 1Q+kQ)

read
wm_%©]
63000  62(0)]"

Sincethenomeequalse 2", wehavetherelation6,(0) /65(0) = v/2—1 = tan(rr/8)
(see [31], p. 525), and we conclude that d(t/ T, w/2) has (double) zeros for
t=3T+mT, 0 = 1Q +kQ). Inversion of d(t/T, /) in order to find
C(t/T, w/ ) may thus be difficult.

1-
?d(§+m,§+k) = 03(0) [1—2
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Figure 1: The Fourier transform d(t/ T, w/$2)/T in the case of a Gaussian ele-
. 2
mentary signal g(t) = 2ie= 7/ T)",

Zerosof d(t/ T, w/€2) not only prohibit an easy determination of the window
function w(t), but they lead to another unwanted property: they enable us to
construct a (not identically zero) function z(t/T, w/$2) such that the product
Zt/T, w/Q)d(t/T, w/ Q) [cf. Eq. (2.14)] vanishes. For a Gaussian elementary
signal, with zerosfor (t = 3T +mT, w = $Q + k), we might choose

z(%,%)ZXm:Xk:aG—g—m>s<%—g—k>z. (2.18)

Inverse Fourier transforming this function yieldsthe array
Zok = (=)™, (2.19)

which is a homogeneous solution of Eq. (2.10). Hence, Gabor coefficients might
not be unique: if ¢k are Gabor coefficients that determine the window function
w(t), then ¢ + zn are valid Gabor coefficients, aswell!

In the next section we will present a different and mathematically more attrac-
tive way to find the window function w(t) that corresponds to a given elementary
signd g(t).



3 Zak transform

In this section weintroduce the Zak transform[32, 33, 34] and we show itsintimate
relationship to Gabor’s signal expansion. The Zak transform ¢(t, w; 7) of asignal
@(t) is defined as a Fourier transformation of the sequence ¢(t + mt) (with m
taking on al integer values and t being a mere parameter), hence

ot,w; 1) = Zgo(t + mr)e_j Mot, (3.)

we will throughout denote the Zak transform of a signa by the same symbol as
the signal itself, but marked by a tilde on top of it. We remark that the function
@(t, w; T) is periodic in the frequency variable w with period 27/t and quasi-
periodicinthe timevariable t with quasi-period 7:

2 .
@ (t +mz, o+ k—n; r) = ¢(t, w; T)el MeT, (3.2
T

Hence, in considering the Zak transform we can restrict ourselvesto the fundamen-
tal Zak interval (—3t <t < 7, —7/1 < w < /7). Theinverse relationship of
the Zak transform (3.1) has the form

et +mr) = L/ o(t, w; r)ej MOT g,); (3.3
27[ 2n/t

itwill beclear that thevariablet in Eq. (3.3) can berestricted to aninterval of length

7, with m taking on all integer values. From the properties of the Zak transform

we mention Parseval’s energy theorem, which leads to the relationship

1 1
—// |6(t, w; 7)|°dtdw = —/lgo(t)lzdt. (3.4
27T T J2n/T T

The Zak transform ¢(t, w; t) provides ameans to represent an arbitrarily long
one-dimensiona time function (or one-dimensiona frequency function) by atwo-
dimensiona time-frequency function on a rectangle with finite area 2. This
two-dimensiona function ¢(t, w; t) is known as the Zak transform, because Zak
was the first who systematically studied this transformation in connection with
solid state physics [32, 33, 34]. Some of its properties were known long before
Zak's work, however. The same transform is called Weil-Brezin map and it is
claimed that the transform was aready known to Gauss [28]. It was also used by
Gel’fand (see, for instance, [29], Chap. XII1); Zak seems, however, to have been
the first to recognize it as the versatile tool it is. The Zak transform has many
interesting properties and a so interesting applicationsto signa anaysis, for which
we refer to [18, 19]. In this section we will show how the Zak transform can be
applied to Gabor’'s signd expansion.

We want to make an observation to which we will return later on in this paper.
Suppose that, for small T for instance, we can approximate afunction g(t) by the
pi ecewise constant function

gt) = ) gurect (t —an) , (3.5)

8




whererect(x) = 1 for —% < x < 7 and rect(x) = 0 outsidethat interval. In the
timeinterval —1t <t < 37, the Zak transform g(t, w; ) then takesthe form

Gt ;1) = Y ghe” 1T — G(wr); (3.6)
note that this Zak transform does not depend on the time variable t, and that the

one-dimensiona Fourier transform §(wt) of the sequence g, arises. We remark
that Parseval’s energy theorem now leadsto the relation

i d N 2 — L A 2 _ 2
o [Lm [G(t, w; 7)[“dtdw = 27 |0(wt)|dw = 2n:|gn| ) (3.7)

We till have to solve the problem of finding the window function w(t) that
correspondsto a given e ementary signa g(t) such that the two bi-orthonormality
conditions [Egs. (2.7) and (2.8)] are satisfied. We consider again the first bi-
orthonormality condition (2.7)

Smk :/g(t)w;k(t)dt

and apply a Fourier transformation [cf. Eq. (2.11)] to both sides of this condition,
yielding

1=y U g(0)w*(r — mT)e™ ) kQTdr] e~ 1 (MoT —kat),
m k
We rearrange factors
1=y [/ g(x)w’(r — mT) (Z eIk~ “) dti| e ImaT
m k
and replace the sum of exponentias by a sum of Dirac functions

1= Z |:/ g(t)w*(r — mT) (T ZS(r —t— nT)) d{| e~ IMoT

We rearrange factors again

1=T) Y U 9w (t —mT)s(r —t — nT)df] e~ imoT

and evaluate the integral

1=TY Y gt +nTw't +[n—mTe imeT,
After afinal rearranging of factors we find

1=TY gt+nTye ineT [Z w*(t +[n —m]Tyel M= m)wT} _

9



=T [Z gt +nT)e™ “‘UT} [Z w(t +mT)e™] m‘”T} ,

m

in which expression we recognize [see Eq. (3.1)] the definitionsfor the Zak trans-
forms §(t, w; T) and w(t, w; T) of the two functions g(t) and w(t), respectively;
hence

T, w; THw*t,w; T) = 1. (3.8

Thefirst bi-orthonormality condition (2.7) thustransformsinto a product, enabling
usto find the window function w(t) that corresponds to a given elementary signal

g(t) in an easy way:

e from the elementary signa g(t) we derive its Zak transform §(t, w; T) via
definition (3.1);

e under the assumption that division by §(t, w; T) is alowed, the function
w(t, w; T) can be found with the help of relation (3.8);

o finally, the window function w(t) followsfrom itsZak transform w(t, w; T)
by means of the inversion formula (3.3).

It is shown in Appendix A that the window function w(t) found in this way also
sati sfies the second bi-orthonormality condition (2.8).

Let us consider Gabor’s choice of a Gaussian elementary signal again. The
Zak transform of a Gaussian reads

g, w; aT) = Z%e_”(t/T)zeg (om{*; e_”o‘2> , (3.9

where )
0z ) =y qT el M2 (310)

is a theta function again, in this case with nome q = e‘”“z, and where, for
convenience, wehaveset £ = w/ Q2+ jt/T. The Zak transform §(t, w; «T) has
been depicted in Fig. 2 for several values of the parameter t = « T, wherewe have
restricted ourselves to the fundamental Zak interval. Note that for o < % the Zak
transform §(t, w; o T) becomes amost independent of t, as we have mentioned
before.

In the case of a Gaussian dlementary signa and choosing « = 1 (Gabor's
origina choice), the Zak transform of the window function takes the form

1 2 1
T Ty= — — _oigr®/T)"___ =
w(t,w; T) o) 2 B e’ (3.11)

in which expression we have set again ¢ = w/Q + jt/T. In the fundamental
interval the function 1/65(sr¢; ™) can be expressed as

1 Ko\ ¥? o
<—°> |:C0 + 22:(—1)%m cos(2nm§)i| , (3.12)
m=1

Os(mzie™)  \x

10



[G(t, w; aT)| [G(t, w; aT)|

12
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Figure 2: The Zak transform §(t, w; «T) in the case of a Gaussian e ementary
1 2 .

signa g(t) = 2ie= 7t/ )" tor different values of t = aT:

@a=2baoa=1(Ca=3ad(dao=2.
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where the coefficients ¢, are defined by
e 1 1
cn =Y (-pre TN T DEM AN ) (3.19
n=0

(see, for instance, [31], p. 489, Example 14); the constant K, is the complete
elliptic integra for the modulus %\/ﬁz K, = 1.85407468 (see, for instance, [31],
p. 524). It is now easy to determine the window function w(t) viathe inversion
formula(3.3), yielding

-3/2
Tw(t + mT) = 2 e/ 1) (%) (—1)"G,,e2T M/ T) (3.14)
with—1T <t < 1T, and hence

-3/2
Tw(t) =23 (t/T)2<&> > (—pPeT(P+3)° (3.15)

T 1
P31t/ T|

The Gaussian elementary signal g(t) anditscorresponding window function T w (t)
have been depicted in Fig. 3.

Figure 3: A Gaussian elementary signa g(t) = 271te_77(t/-|—)2 (dashed line) and
its corresponding window function Tw(t) (solid line).

A practical way to represent this particular window functionisin the form[20]

Tw(®) =2 (ﬁ)_m(—nmeﬂ[(t/ﬂz —(m+ 7
T

« 3 (e I(P+ T - (M 37T (3.16)

p=m

12



where m isthe nonnegative integer defined by (m— )T < |t| < (m+1)T. Since
the summation in the latter expression yields a result which is close to unity for
any value of m (0.998133 for m = 0, 0.999997 for m= 1, ... , 1 for m = 00), this
representation leads to the approximation

_3/2
Tw(t) ~ 2°} <%> (—ne [t/ T = (m+ 3] (3.17)

withm defined by (m— DT < |t| < (m+ HT.

We mention the property that in the case of a Gaussian dementary signa,
whose Fourier transform has the same form as the elementary signal, the Fourier
transform of the corresponding window function has the same form as the window
function itself. Moreover, we note that for large positive r, the extrema of the
window function read

LK\ Y2
Tw(E[r +3]T) ~ 273 (f) (-1, (3.18)

which implies that |w(t)| does not decrease with increasing value of |t|. More
properties of this particular window function can be found el sewhere [18].

Since the Zak transform §(t, w; T) of the Gaussian elementary signa has
simple zeros for (t = %T +mT,w = %Q + k2), we can again construct a (not
identically zero) function

z(t,w;T)ZZZaG—g—m)a(%—g— >z (3.19)

for which the product T§(t, w; T)Z*(t, w; T) [cf. Eq. (3.8)] vanishes. Thus, with
the help of theinversion formula(3.3), afunction

2(t) = 2T Y (—D"8(t — 1T —mT) (3.20)

occurs, which is a homogenous solution of the bi-orthonormality relation (2.7).
We conclude that if the Zak transform §(t, w; T) of an elementary signal g(t) has
zeros, the corresponding window function may not be unique: if w(t) isawindow
function, then w(t) + z(t) is aproper window function, too.

Zeros in §(t, w; T) may be even worse. When we apply Parseva’s energy
theorem (3.4) to w(t) and substitute from relation (3.8) we get

1

1 , 1 ) , 1 /
T/lw(t)l dt 2yT/nglw(t,a), )|“dtdw 27 ). | et o T)lzdtda)
(3.21)

From this relationship we conclude that in the case of zeros in §(t, w; T), the
corresponding window function w(t) may not be quadratically integrable. This
consequence of zeros in §(t, w; T) is even worse than the fact that the window
function is not unique; it may cause very bad convergence propertiesin the deter-
mination of Gabor’s expansion coefficients.

13



4 Gabor transform and Zak transform for continuous-time
signals

Now that we have shown that, at least in principle, a window function w(t) can
be found corresponding to a given elementary signa g(t), we will focus again on
thetwo relations (2.3) and (2.6). Thesetwo relationsform atransformpair, ashas
been remarked before, and we will therefore associate more appropriate names for
these relations. We define the Gabor transform by means of relation (2.6)

ame/@(t)w:qk(t)dt;

the Gabor transform thusyieldsthe array of Gabor coefficients a,, that corresponds
toasignal ¢(t). Theinverse Gabor transform will then be defined by relation (2.3)

o) =D > anGm(®);
m k

the inverse Gabor transform reconstructs the signa ¢(t) from its array of Gabor
coefficients ay.

In Section 3 we have seen that the Zak transform can be hel pful in determining
the window function w(t) for a given elementary signal g(t). In this section we
will study the possibility of applying the Zak transform to the Gabor transform and
itsinverse.

Let usfirst apply a Fourier transformation [cf. EqQ. (2.11)] to thearray of Gabor
coefficients ap,

(L @) —j(MoT — kot
a(?ﬁ)‘zm 2 ame "
and let us substitute from the Gabor transform (2.6):
t o i i
(- 2\ _ wo —jkQt —j(MoT — kQt)
a(T, Q) Em Ek [/ e(Dw*(t —mT)e dr] e .

Along the same lines as the ones that we followed in deriving Eq. (3.8), we can
now proceed to express the latter relationship in the form

a (% %) — Tot, w; i (t, @ T). (4.2)

Hence, the Gabor transform (2.6) can be transformed into the product form (4.1).
A product form can a so be found for the inverse Gabor transform. If we apply
a Zak transformation [see Eq. (3.1)] to both sides of Eq. (2.3), we get

§t.oT)=>" [ZZamkg(t +nT —mT)el kmi| e~ IneT,
k

n m

14



After rearranging factors
o, w;T) =

_ Z Zamke_j (Mo T — kQ2t) [Z gt +[n— m]T)e_j (n— m)a)T} _
m k n

_ [Zzamke—j (MwT — th)} [Z g(t + nT)e‘jani| ’
k n

m

we immediately get the product relation

o [t w) .

ot,w; T) = a<?, 5) g, w; T). (4.2)
Now that we have found product formsfor the Gabor transform and itsinverse,

we have also found a different way of determining Gabor’s expansion coefficients

amk, Without explicitly determining a window function w(t):

e from the signal ¢(t) and the elementary signal g(t) we derive their Zak
transformso(t, w; T) and §(t, w; T), respectively, according to thedefinition
(3.1);

e under the assumption that division by §(t, w; T) is alowed, the function
at/T, w/2) can befound by means of the product relation (4.2);

o finally, the expansion coefficients a,,, follow fromthefunctiona(t/ T, w/ Q)
with the help of the inverse Fourier transformation (2.13).

Again, we conclude that Gabor’s expansion coefficients may be non-uniquein the
case that §(t, w; T) has zeros. In that case homogeneous sol utions z.,, may occur
for which the Fourier transform z(t/ T, o/ Q2) satisfies the relation

(T w) . ) .

Relation (4.3), which is similar to the product relation (4.2) with ¢(t, w; T) = 0,
can be transformed into the relation

Z Z ZnkOmk () =0, (44)
K

m

which is similar to relation (2.3) with ¢(t) = 0. Relation (4.4) shows that certain
arrays of nonzero coefficientsin Gabor’'s signal expansion may yield a zero result.
We thus conclude that Gabor’s signal expansion may be non-unique: if the array
of coefficients a., yieldsthe signal ¢(t), then the array a + z. yields the same
signal.
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5 Gabor transform and Zak transform for discrete-time
signals

Until now we have only considered continuous-time signals. In this and the
following section we will extend the concepts of the Gabor transform and the Zak
transform to discrete-time signals[9].

L et usconsider adiscrete-timesignal ¢[n]; to distinguishthe discrete-time case
from the continuous-time case, we will use square brackets|[ ] to denote adiscrete-
timesignal, whereas we used curved brackets () to denoteacontinuous-timesignal.
The Fourier transform of a discrete-time signal is defined by

50) =" glne 1M (5.0)

note that this Fourier transformis periodic in the frequency variable 6 with period
2. Theinverse Fourier transformation reads

1 .
oln] = >— A @(0)e)Ndo, (5.2)

where the integration extends over one period 2. As aready expressed in the
introductory Section 1, we will consistently usen, mand N astimevariables, 6, k
and ® as frequency variables, and therelation ® N = 2 holds throughout.

On the analogy of the Gabor transform (2.6) for continuous-time signas, we
introduce the Gabor transform for discrete-time signals

B = 3 plnlwsIn] (53)

with the short-hand notation
wmkn] = wln — mN]el KON (5.4)

again [cf. Eqg. (2.2)]; in the discrete-time case, the positive integer N and the
parameter ® = 2 /N are the respective counterpartsof T and 2 = 27/ T in the
continuous-time case. We remark that the Gabor transform a,, for discrete-time
signalsis an array that is periodic in the frequency variable k with period N; this
periodicity in the Gabor transform, like the periodicity in the Fourier transform,
results from the discrete nature of the signal. On the analogy of the corresponding
relation (2.3) for continuous-timesignals, theinverse Gabor transform for discrete-
time signalstakes theform

el =>" > angmln], (5.5)
m k=<N>

where the summation over k extends over one period N of the periodic array ap.
On the analogy of the continuous-time case we need the Fourier transform of
the array anx, which will be defined by [cf. Eq. (2.11)]

(N 0 —j(MON — k®On -
a<ﬁ,6>:2m:k§>amke J( ) With®N =27), (5.6

16



where the summation over k extends again over one period N. We remark that
this Fourier transform is periodic in the (discrete) time index n with period N
and periodic in the (continuous) frequency variable 6 with period ®. The inverse
Fourier transform reads [cf. Eq. (2.13)]

1 n o i
_ = Z (1YY jiméN — k®n) 7
= 2 n_<N>/@a<N’®>e %, &)

where the summation over n extends over one period N, and the integration over 6
extends over one period ®.

Furthermore we need the Zak transform for discrete-time signals, which will
be defined by [cf. Eq. (3.1)]

5n.0; N) =3 g[n + mNje~IMIN, (5.8)

TheZak transforminthediscrete-time caseis periodicin the (continuous) frequency
variable 6 with period ® and quasi-periodic in the (discrete) time index n with
quasi-period N [cf. Eq. (3.2)]:

2 .
¢<n+mN,9+kWﬂ; N) = ¢(n, 0; Nyel MIN, (5.9)
Theinverse Zak transform now reads [cf. Eq. (3.3)]

N .
¢[n+mN] = —/ @(n, 0: Nyel M'Ngg, (5.10)
2r 27/N

where the time index n can berestricted to an interval of length N, with m taking
on al integer values.
Using the discrete-time equivalents of the Gabor transform, the Fourier trans-

form, and the Zak transform, it is not difficult to show that the Gabor transform
(5.3) can betransformed into the product form [cf. Eq. (4.1)]

_(n 06 - - )
a(ﬁ, 6) = N¢(n, 8; N)w*(n, 8; N) (5.11)
and the inverse Gabor transform (5.5) into the product form [cf. Eq. (4.2)]
7(n,0; N)=a no g(n, 6; N) (5.12)
(0 ’ ’ - N ) @ g 9 ) . .
Let us now consider Gabor’'s choice of a Gaussian elementary signa g(t)
again, and let us consider a discrete-time version g[n] of the elementary signa,
symmetrically positioned with respect to the sampling grid on the t-axis with a
sampling distance T/N:

glnl =g (n%) — 2t~ (N/N) (N odd), (5.13)
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glnl =g ([n + %]%) _ 2t +3/N* (N even). (5.14)

The corresponding Zak transforms §(n, 6; N) follow from substituting from Egs.
(5.13) and (5.14) into Eqg. (5.8) and read [cf. Eq. (3.9)]

g, 6: Ny = 2= TOV/NY o rovem)  (withe = 0/0 + jn/N)  (5.15)

gn. 0: Ny = 2t T+ 3N re ey (withe = 670 + j[n +1/N)
(5.16)
for odd and even N, respectively. It isimportant to note that in the discrete-time
case the zeros of the theta function do not occur on araster point! Hence, the Zak
transform §(n, 6; N) of a Gaussian elementary signa has no zeros.
Let us, for the sake of simplicity, take N odd, which implies that there is a
sampling point at t = 0. The corresponding window function w[n] then reads [cf.
Eq. (3.15)]

Nw[n] = 2_‘_1‘67[(n/N)2 <&>_3/2 i (_1)pe—7T(p + %)2’ (5.17)
T
p+3In/N|

or, in adifferent form [cf. Eq. (3.16)],

Nuw[n] = 2"} (&)‘3/2(_1)%7,[(”/'\')2 —(m+ 17
T

3 (- 1ypme TP+ 7 = (M 57, (5.18)
p=m
which form can be approximated by [cf. Eq. (3.17)]
-3/2
Nuw[n] ~ 2-4 <%> e l/N° =M+ (519

withm defined by (m— )N < |n| < (m+ 2)N. Weremark that for large positive
r, the extrema of the window function read

~3/2
Nw[£(r+iN-1)] ~ 2 <ﬁ> (—1y L0 +3 = 1/2N)* = (r + %] _
T

INTS

_ o (&)‘3/2(_1)ren[<1/2l\l>2 — 4+ H/N] L
T

—3/2
~ o i <&> (—1re (/N (5.20)
T

Unlikein the continuous-time case, where |w(t)| did not decrease with increasing
value of |t| [see Eg. (3.18)], the function |w[n]| does eventualy decrease expo-
nentially with increasing value of |n|. A similar result holds when N is chosen
even.
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6 Discrete Gabor transform and discrete Zak transform

In this section we will introduce discrete versions of the Gabor and the Zak trans-
form[2, 3, 22, 23, 25, 26, 27, 30] by sampling the continuous variable 6 that arises
both in the Fourier transform (5.6) and in the Zak transform (5.8) of discrete-time
signals. We start with the Fourier transform (5.6)

~(n ¢ —j(MON — kén
(i 8) =3, e N,
which is periodic in the discrete time index n with period N and periodic in the
continuous frequency variable 6 with period ®. We define the array a[n, |; N, M]
as samples of this Fourier transforma(n/N, 6/®)

ain. 15 N, M] :a(i '_) _3 Y e M@/~ k2N,

N M
(6.2)
thuswe have sampled the frequency axis such that in each period of length © there
appear M equally-spaced sampling points a distance ® /M apart. We then define
the array Anx as a kind of inverse Fourier transform [cf. Eq. (5.7)] of the array
a[n, l; N, M] by

m k=<N>

Amk _ M_lN Z Z a[n’ |; N, M]ej [m(Zn/M)I — k(27T/N)n] ) (62)

n=<N> I=<M>

We remark that, whereas the array a. is periodic in the frequency variable k with
period N but does not have a periodicity with respect to thetimeindex m, the array
Ak is periodic in both the frequency variable k and the timeindex m with periods
N and M, respectively. It can easily be shown that the relation between A, and
ank reads

Ank = Z AmirM ks (6.3)

fromwhich relationwe concludethat A, isasummationof thearray a.,, and all its
replicas shifted along the m-direction over distancesr M (r = —oo, ..., +00). Of
course, the array ajn, I; N, M] can directly be expressed in the array A« through
therelationship [cf. Eq. (6.1)]

m=<M> k=<N>

Thelatter relationship (6.4) between thearraysaln, |I; N, M] and A, isknown
asthediscrete Fourier transform, whereas therelation (6.2) is consequently called
the inverse discrete Fourier transform. It isimportant to note that if a, # 0in
an m-interval of length M and vanishes outside that interval, the array a, isjust
one period of the periodic array Aqx and can thus be reconstructed from A and,
hence, fromafn, I; N, MJ.
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We will now perform an anal ogous procedure for the Zak transform (5.8)

§n.6:N) = g[n +mN]e~ MmN,

which, like the Fourier transform (5.6), is periodic in the continuous frequency
variable 6 with period ©, aswell. We definethe array ¢[n, I; N, M] as samples of
thisZak transform ¢(n, 6; N)

i (. @ —jim@r/M)I.
<p[n,I,N,M]:<p<n,MI,N)=Xm:go[n+mN]e ym@r/Ml. (g5

thus we have again sampled the frequency axis such that in each period of length
® there appear M equally-spaced sampling pointsadistance ® /M apart. We then
define the function ®[n + mN] asakind of inverse Zak transform [cf. Eq. (5.10)]
of thearray ¢[n,|; N, M] by

®[n + mN] :% 3" @ln,1; N, M1el M@T/MIT, (6.6)

I=<M>

It can easily be shown that the relationship
®[n] = Zgo[n +rMN] (6.7)

holds; thus, ®[n] isasummation of the signal ¢[n] and all itsreplicas shifted over
distancesrMN (r = —o0, ... , +00). The sequence ®[n] is thus periodic in the
timeindex n with period M N. Of course, the array ¢[n, |; N, M] can directly be
expressed in the sequence ®[n] through the relationship [cf. Eq. (6.5)]

gIn. s N, M= Y o+ mNje~IM@r/MI (6.8)

m=<M>

On the analogy of the discrete Fourier transform (6.4), we shall call the latter
relationship (6.8) between the array ¢[n,|; N, M] and the sequence ®[n] the
discrete Zak transform, whereas the relation (6.6) will consequently be caled the
inverse discrete Zak transform. It is important again to note that if ¢[n] £ 0in
aninterva of length M N and vanishes outside that interval, the signal ¢[n] isjust
one period of the periodic sequence ®[n] and can thus be reconstructed from ®[n]
and, hence, from ¢[n, I; N, M].

We are now prepared to samplethe product form (5.11) of the Gabor transform
for discrete-time signals, leading to

amn, I; N, M] = Ng[n, I; N, M]@*[n, I; N, M]. (6.9)

Upon substituting the latter expression into the inverse discrete Fourier transform
(6.2), we get
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1 - ~
Ank = 00 > > Ng[n.I; N, MIw*[n, I; N, M]

n=<N> I=<M>

wel M@ /M)l — k(27 /N)n] ’

in which relation we substitute from the discrete Zak transform (6.8) for ®[n]

Amk:$ Z Z |:Z <I>[n+rN]e_jr(2”/M)|}

n=<N>I=<M> | r=<M>
X?I)*[n, I N, M]ej [m(ZJT/M)I — k(Zn/N)n] )

We rearrange factors

A = Z Z ®[n +rN] |:$ Z ﬂ)[n,l;N,M]ej(r—m)(Zn/M)|i|

n=<N>r=<M> I=<M>

Xe—j k(27 /N)n
and recognize [cf. EQ. (6.6)] the inverse discrete Zak transform of W[n]

A= D D ®[n +r N]W*[n +rN — mN]e~ 1 k@7/N)n

n=<N>r=<M>

If weintroduce, on the analogy of Eq. (5.4), the short-hand notation
W[N] = W[n — mN]el KON — win — mNjel kZr/N)n (6.10)
the coefficients A, taketheform

Amc= Y > ®[n+rNJWln+rN],

n=<N>r=<M>

which finally leads to
Amc= Y ®[nW;[n]. (6.11)
n=<MN>
Thelatter relationshipwill be called the discrete Gabor transform. Asweremarked
before, the discrete Gabor transform A, shows — apart from the usual periodicity
with period N in the k-direction, due to the discrete nature of the signal — a
periodicity with period M in the m-direction.

The inverse of the discrete Gabor transform results from sampling the product
form (5.12) of theinverse of the Gabor transform for discrete-timesignals, leading
to

¢[n,1; N, M] = a[n, I; N, M]g[n,I; N, M]. (6.12)

Upon substitutingthelatter expressioninto theinverse discrete Zak transform (6.6),
we get

@[n]:% > an,I; N, MIg[n, I; N, M],

I=<M>
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in which relation we substitute from the discrete Fourier transformation (6.4)

<1>[n]=$ > [ oy A e i [m@r /M)l —k(27r/N)n]i|

I=<M> | m=<M> k=<N>
x@[n,l; N, M].
We rearrange factors

q)[n]: Z Z A [% Z Q[n,l; N’M]e—jm(Zﬂ/M)|i|ejk(27T/N)n

m=<M> k=<N> I=<M>

and recognize [cf. EQ. (6.6)] the inverse discrete Zak transform of G[n]
o= Y 3 AwGIn— mN]el K@T/Nn,

m=<M> k=<N>

With the short-hand notation [cf. Eq. (6.10)]
Gm[n] = G[n — mN]ej k(2m/N)n.
the inverse discrete Gabor transform thus reads

on= > > AwGmn]. (6.13)
m=<M> k=<N>

What is the importance of having a discrete Gabor transform (6.11), whereas
we are in fact only interested in the coefficients of Gabor’s signal expansion and
thus in the normal Gabor transform (5.3)? Assume that the signal ¢[n] # 0in
an interval of length N, and vanishes outside that interval, and that the window
function w[n] # 0 in an interva of length N,, and vanishes outside that interval;

then the coefficients of the (normal) Gabor expansion (5.3)

anc =y _ ¢InlwpIn]

can only be# 0in an m-interva of length M, say, where M isthe smallest integer
for which therelation MN > N, + N,, — 1 holds. Now take M such that MN >
N, + N,, — 1 and construct the periodic signal sequence ®[n] = ). ¢[n+rMN]
and the periodic window sequence W[n] = ) w[n + r MN] according to Eq.
(6.7). In that case the array a of the (hormal) Gabor transform (5.3) can be
identified with one period of the array A of the discrete Gabor transform (6.11)

Ank = Z P[] Wi [n].
n=<MN>
The array Ay (and thus a,) can be computed via the discrete Zak transform
and the inverse discrete Fourier transform, and in computing these transforms we
can use a fast computer agorithm known as the fast Fourier transform (FFT).
Calculating the discrete Gabor transform A, in such a way could be called the
fast discrete Gabor transformand is equiva ent to the fast convolution well known
in digital signal processing. In detail we proceed asfollows:
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e fromthesignal ¢[n] and the window function w[n] we determine — with the
useof afast computer algorithm—their discreteZak transforms¢g[n, I; N, M]
and w[n, I; N, M], respectively, viaEq. (6.5);

e thediscrete Fourier transform a[n, I; N, M] follows from the product form
(6.9) of the discrete Gabor transform;

e fromthearray a[n, I; N, M] we determine — with the use of afast computer
algorithm again — the inverse discrete Fourier transform A, according to
Eq. (6.2);

e thearray of Gabor expansion coefficients a., then follows as one period of
the periodic array An.

In general thesignal ¢[n] doesnot vanish outsideacertaininterval or, if it does,
the interval can be too large. In that case we can apply overlap-add techniques
by splitting the signa ¢[n] in parts and treating al parts separately. In detail we
proceed as follows. We represent the signal ¢[n] as a sequence of partia signas
¢"[n], where each partial signal vanishes outside an interval K; hence,

o[nl = ¢[n] (6.14)

with
p[n] forrN, <n<(@+1N,—-1

OfA1 —
¢ Inl = 0 elsawhere. (6.15)

Upon substituting the expansion (6.14) into the Gabor transform (5.3) we get

Bk =Y [Z VIl | win] =>" [Z q0<r>[n]w;k[n]} => an. (6.16)
where each partial Gabor transform

=y _ ¢ Inlwpyn]

can be evaluated along the lines described in the previous paragraph. The last
summationin Eg. (6.16) must takeinto account, of course, the overlap between the
partia Gabor transforms.
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7 Oversampling by arational factor

In his origina paper, Gabor restricted himself to a critical sampling of the time-
frequency domain, where the expansion coefficients can be interpreted as inde-
pendent data, i.e., degrees of freedom of asignd. It isthe aim of this section to
extend Gabor’s concepts to the case of oversampling, in which case the expansion
coefficients are no longer independent.

Let us consider an elementary signa g(t) again, but let us now construct a
discrete set of shifted and modulated versions defined as [cf. Eq. (2.2)]

g(t — maT)el B2 7.0

where the time shift « T and the frequency shift 82 satisfy the relationships
QT = 27 and o < 1, and where m and k may take al integer values. Gabor’'s
signal expansion would then read [cf. Eq. (2.3)]

o) =YY amgt — maT)el KEXL, (7.2)
m k

Gabor’s origina signa expansion was restricted to the special case ¢ = 1, and
more particular « = B8 = 1, in which case the expansion coefficients a,, can be
identified as degrees of freedom of the signal. For ¢ > 1, the set of shifted
and modulated versions of the elementary signa is not complete and thus cannot
represent any arbitrary signal, while for ¢ < 1, the set is overcomplete which
implies that Gabor’s expansion coefficients become dependent and can no longer
beidentified as degrees of freedom. In the specia case o8 = 1, it has been shown
in Section 3 how a window function w(t) can be found such that the expansion
coefficients can be determined viathe so-called Gabor transform, which now takes
theform [cf. Eq. (2.6)]

B = /qo(t)w*(t —maT)e  1KBS2 gt (7.3)

It isthe aim of this section to show how a window function can be found when the
parameters o and B satisfy therelation o = q/p < 1, where p and q are positive
integers, p >q > 1.

Inthecaseof oversampling(i.e., f < 1), therelationship between thewindow
function w(t) and the elementary signal g(t) follows from substituting from the
Gabor transform (7.3) into Gabor’'s signal expansion (7.2). After some manipula-
tion (see Appendix B) we get the condition

— Z (t + k— — moeT) gt —maT) = 4. (7.4)
In principle, awindow function can be derived from agiven el ementary signal with
the help of Eq. (7.4); the way in which we should proceed, however, is not clear.

That a window function can be found in the case of oversampling is not
surprising. To see thislet us consider the continuous analogues of Gabor’s signal
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expansion and the Gabor transform. The Gabor transform (7.3) can be considered
as a sampled version of the sliding-window spectrum s(t, w) [7, 10] of the signal
@(t), defined as

s(t, w) = /go(r)w*(r _tye—lotge, (7.5)

where the sampling appears on the time-frequency lattice (t = ma T, w = kBQ).
Gabor’s expansion coefficients follow from the sliding-window spectrum through
the relation a = s(ma T, kBR). It iswel known that the signal ¢(t) can be
reconstructed from its sliding-window spectrum s(t, ) in many different ways,
one of them reading

go(r)/lw(t)lzdt = %// s(t, w)w(z — el P dtdw. (7.6)

Itisnot difficult to seethat the latter signal representation isa continuous analogue
of Gabor’ssignal expansion (7.2), and that it can be derived from this expansion by
letting thetime step o T and the frequency step B2 tend to zero. Infact, thesigna
representation (7.6) isidentical to Gabor’s signal expansion (7.2) with an infinitely
dense sampling lattice. We concludethat in that limiting case, thewindow function
function w(t) may be chosen proportional to the elementary signal g(t). Later on
in this section we will derive a detailed transition from Gabor’s signa expansion
to its continuous analogue, by letting oS | O.

Using the Fourier transform [cf. Eq. (2.11)] and the Zak transform [cf. Eq.
(3.2)], it can be shown (see Appendix C) that the Gabor transform (7.3) can be
transformed into the sum-of-productsform

é(x y+r)_osz
op q

T Q T Q
X Z % <(x +s)%, y_: osz) w* ((x +s)%, [y+ L] —; aT),

s=<Qq> Pl o
(7.7)
where the expression s = < q > is used throughout as a short-hand notation for
an interval of g successive integers (s = 0, 1, 2, ..., q — 1, for instance); due to
the periodicity of the Fourier transform and the Zak transform, any sequence of g
successive integers can be chosen. Note that in Gabor’s original case of critical
sampling (p = q = 1), Eq. (7.7) takes the simple product form [cf. Eq. (4.1)]

_ - Q . Q
ax,y)=aTg (XoeT, y—; aT) w* (onT, y—; aT) .
o o

By using the Fourier transform and the Zak transform, it can aso be shown
(see Appendix D) that Gabor’s signal expansion (7.2) can be transformed into the
sum-of-products form

T Q
@ <(x + S)ﬂ, y—; apT) =
q o
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1 _ ry . apT rle
pr;>a<x,y+ p)g((ers) : ,[y+ p]a’aT)’ (7.8)
where the expressionr = < p > is used throughout as a short-hand notation for
an interval of p successiveintegers (r = 0,1, 2, ..., p— 1, for instance); due to
the periodicity of the Fourier transform and the Zak transform, any sequence of p
successive integers can be chosen. Note that in Gabor’s original case of critical
sampling (p = q = 1), Eq. (7.8) takes the simple product form [cf. Eq. (4.2)]

. Q _ - Q
7 (XaT, y—; aT) =ax,y)d (xaT, y—; aT) .
o o

We remark that, withr = < p >, the Fourier transform a(x, y) is completely
determined by the p functions

a(x, y) :é<x,y+ Lp) (7.9)

where the variable y extends over an interval of length 1/p. Likewise, with
S = < ( >, theZak transform ¢ (xapT/q, Yy /a; apT) iscompletely determined
by the g functions

3 T Q
Ps(X,y) = @ ((x + s)%, y— apT> , (7.10)

where the variable x extends over an interval of length 1. Moreover, with
r=<p>ads =< q >, the Zak transforms §(xapT/q, yQ/o; «T) and
w(XapT/q, yQ/a; aT) are completely determined by the g x p functions

TT r1e
gsr(X,y)ZC]((X%-S)ﬂ, y+ — _§OZT) (7.11)

qa L Pl o

e TT 1R
wsr(xvy):w<(x+3)ﬂ, y-|—L —;OZT), (7.12)

qa L Pl
respectively, where x extends over an interva of length 1 and y over an interval of

length 1/p.

L et usnow, for convenience, chooser = 0, 1, ..., p—1;the pfunctionsa, (X, y)
can then be combined into a p-dimensional column vector of functions

a=[a(X,y) a(X,y) ... ap_1(X, Y] (7.13)

Likewise, withs = 0, 1, ..., q — 1, the g functions ¢s(X, y) can be combined into
ag-dimensional column vector of functions

()b = [§00(X, y) 901()(7 y) @q—l(xv y)]T (714)
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Moreover, the g x p functions g (X, ¥) and wg (X, ¥) can be combined into the
(g x p)-dimensional matrices of functions

Joo(X, Y) Joi(X,y) ... Jo,p-1(X, Y)
J10(X, Y) gu(X,y) ... O1,p-1(X, Y)
G= . . . . (7.15)
Og-1.00%, Y) Oq-110GY) ... Gg-1p-1(X,Y)
and
woo(X, Y) wor(X,y) ... wo, p—1(X, Y)
wio(X, Y) wn(X,y) ... wq,p-1(X, Y)
W = . . . . , (7.16)
Wq-1,006,Y) wg-11(X, YY) ... wg_1p-1(X,Y)

respectively. With the help of these vectors and matrices, Egs. (7.7) and (7.8) can
now be expressed in the el egant matrix-vector products

a= Pl (7.17)

q

and 1
¢ = ca (7.18)

where, as usual, the asterisk in connection with vectors and matrices denotes com-
plex conjugation and transposition. Note that Eq. (7.17) represents p equationsin
g unknowns, whereas Eq. (7.18) represents q equationsin p unknowns. In the case
of oversampling (p > q > 1) thelatter set of equationsis thus underdeter mined.

We will now prove that Gabor’s signal expansion (7.2) and the Gabor transform
(7.3) form a transform pair, by showing that for any elementary signal g(t) a
window function w(t) can be constructed. Instead of doing this by combining
Gabor’s signa expansion and the Gabor transform, which lead to Eq. (7.4), we will
use theresults (7.17) and (7.18) derived above.

If we substitutefrom Eq. (7.17) into Eq. (7.18) we get

.
¢ = ‘%GW%,

which relation should hold for any arbitrary vector ¢ [i.e., for any arbitrary signa
@ (t)]. Thisconditionimmediately leads to the relationship

T
%GW* =g, (7.19)

where |, isthe (q x g)-dimensional identity matrix.
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We remark that in Gabor’s origina case of critical sampling (p = q = 1), the
matrices G and W reduce to scalars gy and wgg, respectively, and that Eq. (7.19)
takes the simple product form [cf. Eq. (3.8)]

Q Q
aT Qoowgy =aTg (XoeT, y—; aT) w* (onT, y—; aT) =1
o o

In this case of critical sampling, the Zak transform of the window function could
thusbeeasily found, in principle, astheinverse of the Zak transform of theelemen-
tary signa, and the resulting window function would be unique. The occurrence of
zerosintheZak transform of theelementary signal, however, prohibitssuch an easy
procedure. The problems caused by these zeros can be overcome by oversampling.

In the case of oversampling, the window function that corresponds to a given
elementary signal is not unique. Thisis in accordance with the fact that in the
case of oversampling the set of shifted and modulated versions of the e ementary
signal is overcomplete, and that Gabor's expansion coefficients are dependent and
can no longer be considered as degrees of freedom, as we have mentioned before.
In the case of oversampling, the general condition (7.19) enables us to construct
a window function w(t) for a given elementary signa g(t), by solving a set of
g x g equationsing x p unknowns. Since q < p, thisset of equationsis again
underdetermined.

Let usnow consider Egs. (7.18) and (7.19) inthe general case of oversampling.
In that case we have g < p, which impliesthat G is not a square matrix and does
not have anormal inverse G™*, and that Egs. (7.18) and (7.19) do not have unique
solutions. It iswell known that, under the condition that rank(G) = q, the optimum
solutionsin the sense of the minimum L, norm can now be found with the help of
the so-called generalized (Moore-Penrose) inverse[12] G', defined by

G' = G*(GG") L (7.20)
notethat GG' = I, and that G'GG* = G*. The optimum solution W, then reads
q x
Wopt = (X_T(GT) (7.21)
and the optimum solution a,,; reads
apT
8oy = PGl = %W;ptqﬁ. (7.22)

Of course, if we proceed in this way, we will find, for any x and y, the minimum
L, norm solutions for the matrix W and the vector a. It is not difficult to show,
however, that the minimum L, norms of W and a correspond to the minimum
L, norms of the Zak transform w(xapT/q, y2/a; aT) and the Fourier transform
a(x, y), respectively, and thus, with the help of Parseval’s energy theorem, to the
minimum L, normsof thewindow functionw(t) and thearray of Gabor coefficients
amk, respectively.

Instead of looking for the optimum solution W, in the sense of the minimum
L, norm of W, we could as well look for the optimum solution W in the sense
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of the minimum L, norm of the difference W — F; in thisway we would find the
matrix W that resembles best the matrix F. To find W ¢ we proceed as follows

T
%GW* .
T T
L GW-F) =1y— —GF,
q q
T T
We—F =6 (1, ZGF),
q
q q

T T
%W*F ~=G'+ %(lp ~ G'G)F*

and hence
Wi =W, + (I, — G'G)F, (7.23)

where |, isthe (p x p)-dimensional identity matrix.
An obvious choice for the matrix F would be a matrix that is proportional to
thematrix G. From Eq. (7.23) we then have

Wy =W;, + (I, - G'G)G",

but the second term in the right-hand side of this relationship vanishes, due to the
fact that
(l,-G'G)G*=G"-G'GG"=G"-G* =0.

We thus reach the important conclusion that Wg = W,p,; hence, the window
function wep (t) that hasthe minimum L, norm isthe same as the window function
wy(t) whosedifference from the elementary signal g(t) hasthe minimum L, norm,
and resembl es best this eementary signal.

In Fig. 4 we have depicted the Zak transforms of some window functions that
correspond to the Gaussian elementary signal (2.1) for different values of & and 3,
resulting in different values of oversampling p/q, whilein Fig. 5 we have depicted
these window functions themselves. We remark that the resemblance between the
window function and the elementary signal increases with decreasing «.

Let us finally consider the special case of integer over&ampling (p>q9=1).
In that case the matrices G and W reduce to row vectors g" and w', respectively,
and the L, norm of G equals g*g. Moreover, G' = (g*g)'g* = = aTwy,. Letus
consider the L, norm g*g in thelimiting casethat «T | Oand p — oc:

(rar. [+ 5] Fe7)

Since §(t, w; aT) isamost independent of t for small values of o T, we might as

well write
5 r|Q
ot [y+5]5eT)
pl o«
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Figure 4: The Zak transform w(t, w; aT) in the case of a Gaussian e ementary
1 2 . .
signa g(t) = 2t~/ T)” for different values of oversampling:

@a=p=6/7p/q=7/6,
(b)a =B =/2/3, p/qa =3/2,
(©) a =B =/2/5 p/q="5/2,
(d)a=p=.2/7p/a=7/2
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(© (d)

Figure 5: A Gaussian elementary signa g(t) = 271te_77(t/-|—)2 (dashed line) and
its corresponding window function (T /q)w(t) (solid line) for different values of
oversampling:

@« =p=+6/7p/d=7/6,

(b) e =B =/2/3, p/qa=3/2

(¢)« =B =/2/5 p/d=5/2,

@d)a=p8=12/7p/a=7/2
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and for large p thismight as well be written as

:pz(; (53 aT)

Inthelimitof « T | Oand p — oo, we might aswell write the | atter expressionin

theform
g'g ~ ﬂ/ / 1§(t, w; «T)[*dtdw,
21 Jor Q/a

which, with the help of Parseval’s energy theorem (3.4), can be expressed in the

form 0
~ 2
T/Ig(t)l dt.

g = (XT (g*g)WOpt )

2

Since
we finally conclude that

g(t) ~ [pf |g(t)|2dt] Wopt (1),

or
Wopt (t)

pf |wopt(t)|2dt '
We can link these results to the continuous analogue (7.6) of Gabor’s signal ex-

pansion. Approximating the double integration in this continuous analogue by a
double summation we get

g(t) ~ (7.24)

o0 = ZZs(maT k8w (x — maT)el BT,

(t)l2dt

which expression has indeed the form of a Gabor expansion [cf. Eq. (7.2)] with
expansion coefficients a = s(ma T, KBQR) [cf. Eq. (7.5)] and with an elementary
signa g(t) that is proportional to the window function [cf. EQ. (7.24)].
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8 Discrete Gabor and Zak transformswith over sampling

In this section we apply theideas of oversampling to the discrete Gabor expansion
and thediscrete Gabor transform. Inthegeneral case of oversampling, the (discrete)
Gabor expansion for a discrete-time signal ¢[n] takesthe form

e =YY amgln —mNJel 27kN/K (8.)

m k=<K>

and the (discrete) Gabor transform reads

amc = Y _ p[n]w[n - mN]e—127kn/K (82

These formulas are similar to previous expressions for the Gabor expansion [cf.
Egs. (5.5) and (6.13)] and the Gabor transform [cf. Egs. (5.3) and (6.11)], except
that we have now chosen ® = 27 /K instead of ® = 27/N, with K > N. The
case K = N correspondsto critical sampling, whilefor K > N wearedealingwith
oversampling. For convenience, we introducetwo integers pandq (p > q > 1)
that do not have common factors and for which the relationship pN = gqK holds;
notethat K/N = p/q > 1 represents the degree of oversampling.

It istheaim of this section to derive arel ationship between the window function
w[n] andtheelementary signal g[n] and to show how thearray of Gabor coefficients
amk can be determined in the case of oversampling where, moreover, the window
function w[n] has afinite support N,,. For convenience, we consider signals ¢[n]
that have a finite support N,, too; in the case that we are dealing with signals of
longer (or even infinite) support, we can aways split the signal in parts that do
have afinite support N, and treat all these parts separately, as we have mentioned
already in Section 6. Under these conditions of finite support, the array anx, which
is periodic in the k-variable, has a finite support M in the m-variable, where the
support M satisfies the condition

M N 2 N(p + Nu,v - l (83)

We introduce, as before, the periodized version A, of the array a., according
to[see Eq. (6.3)]
Ank = Zam+rM,k§ (8.4)

noteagain that the periodized array A isperiodicinm (and k) with period M (and
K), and that we can identify a., (which does not show a periodicity with respect
to m) as one period of A.x. Furthermore we introduce, as before, the periodized
version W[n] of the (finite support) window function w[n] according to [cf. Eq.
(6.7)]

WIn] = " wn+rMNJ; (8.5)
note that the periodized window function W[n] is periodic with period M N and
that we can identify w[n] asone period of W[n]. Itiseasy to seethat the periodized
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array Anx can be expressed in terms of the periodized window function W[n] via
akind of Gabor transform [cf. Eq. (8.2)]:

A=Y p[n]W*n — mNJe~ 1 27kn/K. (8.6)

We could as well periodize the (finite support) signa ¢[n] according to [see
Eq. (6.7)]
o[n] = > ¢[n +rMNJ; (8.7)

note that the periodized signal ®[n] is periodic with period M N and that we can
identify ¢[n] asoneperiod of ®[n]. If we substitutefrom Gabor’s signal expansion
(8.1) into Eq. (8.7) we get

LUEDY [Z >~ angln +rMN — mN]el 2K 1M N)/K} .

r m k=<K>

After arranging factors and requiring that K is a divisor of MN (and hence
el 27kr (MN/K) _ 1) e can write

oMl =D ) am [Zg[nﬂMN—mN]}ejz’Tk"/K.

m k=<K>

After introducing the periodized version G[n] of the elementary signa g[n] [cf.
Eqg. (8.5)], we can write

o =Y > awGIn — mNjel Z7K/K, (8.9)
m k=<K>
which relationship has the form of a Gabor expansion [cf. Eqg. (8.1)].
It is not difficult to show that we also have the relationships [cf. EQ. (6.13)]

o= Y 3 AwGIn - mNjel2Tkn/K (8.9)

m=<M> k=<K>

and [cf. Eq. (6.11)]
Amc= Y ®nWI[n— mNJe~ 1 2rkn/K (8.10)

n=<MN>

which are fully periodized versions of Gabor's signa expansion (8.1) and the
Gabor transform (8.2), respectively. Equation (8.9) isknown as the discrete Gabor
expansion [just like Eq. (6.13)], while Eq. (8.10) is known as the discrete Gabor
transform [just like Eq. (6.11)]; the difference with the previous definitionsis only
caused by the oversampling K > N.

Inthegeneral caseof oversampling, thediscreteFourier transformaln, I; K, M]
of the periodic array Ay is defined according to [cf. Egs. (6.1) and (6.4)]

| .
é[n’I;K’M]:a<%’ﬁ>: Z Z Amke—JZJT(mI/M—kn/K);
(8.11)

m=<M> k=<K>
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note that the discrete Fourier transform a[n, |; K, M] isperiodicin the variablesn
and | with periods K and M, respectively. The inverse discrete Fourier transform
then reads [cf. Eq. (6.2)]

Ay = M_lK Z Z é[n,l; K, M]ejZTL’(ml/M —kn/K)' (812)

n=<K>l=<M>

As before, the discrete Zak transform w([n, |; N, M] of the periodized window
function W[n] is defined as a one-dimensiona discrete Fourier transform of the
sequence W[n + mN] (withm = < M > and n being a mere parameter), hence
[cf. Eq. (6.8)]

aln, ;N M = Y Win 4 mNje™127mI/M, (8.13)

m=<M>

after substituting from Eqg. (8.5), it can easily be shown that the discrete Zak
transform can also be represented in the form [cf. Eq. (6.5)]

aln,1; N, M] =3 win + mNje~ 1 27mi/M, (8.14)

m

We remark again that the discrete Zak transform w[n, I; N, M] is periodic in the
frequency variable! with period M and quasi-periodic in the time variable n with
quasi-period N:

[N +mN, | +kM; N, M] = @[n, I: N, M]el ZZmI/M (8.15)

Theinverse relationship of the discrete Zak transform takesthe form [cf. Eq. (6.6)]

W[n+mN]:% 3" @ln,1; N, M1el Z7MI/M. (8.16)

I=<M>

We also introduce the discrete Zak transform of ®[n]

gIn.1; pN,M/pl = > ®[n + mpNje~ 1 27 MPI/M, (8.17)

m=<M/p>

where the condition that p isadivisor of M should hold. If we substitutefrom Eq.
(8.7), it is not difficult to see that we a so have the relationship

gIn.1: pN, M/p] = Y ¢[n + mpN]je~127MPI/M, (8.18)

From the condition that p is adivisor of M, we can write M = pL, where L is
an integer. From pN = gK and M = pL we concludethat MN = gK L, which
impliesthat K isadivisor of M N. Thelatter condition isexactly the condition that
should hold to be able to derive Eq. (8.8). Moreover, from pN = gqK and knowing
that p and g do not have common factors, we aso conclude that p is a divisor of
K; hence we can write K = pJ, where J is an integer. We thus concludethat K,
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M, and N can be expressed in terms of theintegers p, q (withp >q > 1,and p
and g not having common factors), Jand L: K = pJ, M = pL,and N = qJ.

Using the discrete Fourier transform and the discrete Zak transform, it can be
shown (see Appendix E) that the discrete Gabor transform can be transformed into
the sum-of-products form

a[n, 1 +rM/p; K, M] =

=K Y gln+sK,1; pN, M/pli*[n +sK, I +1rM/p; N, M],  (8.19)
S=<(Q>

which isthe discrete counterpart of Eq. (7.7). Notethat in Gabor’'s original case of

critical sampling (p = g = 1, K = N), Eq. (8.19) takes the simple product form
[see Eq. (6.9)]

a[n, I; N, M] = N@[n, I; N, M]@*[n, I; N, M].

Weremark that Eg. (8.19) enablesusto cal culate Gabor’ sexpansi on coefficients
amk inaway that is completely different from the original definition (8.2).

e We first determine the discrete Zak transform ¢[n + sK, I; pN, M/p] of
the signa ¢[n] by means of its definition (8.18). Since the discrete Zak
transformis essentialy a discrete Fourier transform, this can be donewith a
fast algorithm, especialy if we choose M/p = L equal to a power of 2.

e We then multiply the discrete Zak transform ¢[n + sK, I; pN, M/p] by
the discrete Zak transform w*[n + sK,| 4+ rM/p; N, M] of the window
function w[n]. Note that the determination of the discrete Zak transform of
the window function needs to be done only once, and that it can also be done
with afast agorithm.

e Wesumover s = < g >. Note that this summation is not necessary if we
chooseq = 1, i.e, inthe case of integer oversampling K/N = p.

e Wethen determinethe periodized array A« by means of theinverse discrete
Fourier transformation (8.12). Notethat thiscanbedonewith afast agorithm
again, especidly if we choose K = pJ and M = pL equal to powers of 2.

e Wefinally recognize the array of Gabor coefficients a, as one period of the
periodic array Ank.

By using the discrete Fourier transform and the discrete Zak transform, it
can also be shown (see Appendix F) that the discrete Gabor expansion can be
transformed into the sum-of-products form

p[n+sK,I; pN, M/p] =

=2 3" a[n.1+rM/p: K. MIgIn+ K. | +TM/p: N, M],  (8.20)

r=<p>
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which isthe discrete counterpart of Eg. (7.8). Notethat in Gabor’s original case of
critical sampling (p = g = 1, K = N), Eq. (8.20) takes the simple product form
[see Eq. (6.12)]

@In,1; N, M] = a[n, I: N, M]g[n, 1; N, M].

We remark that, withr = < p >, thediscrete Fourier transform ajn, I; K, M]
is completely determined by the p functions

a[n, Il =a[n,l +rM/p; K, M], (8.21)

where the variable | extends over an interval of length M/p. Likewise, with
s = < ( >, thediscrete Zak transform ¢[n, |; pN, M/ p] iscompletely determined
by the g functions

@s[n, 1] = ¢[n + sK, I; pN, M/p], (8.22)

where the variable n extends over an interval of length K. Moreover, withr = <
p > ands = < q >, thediscrete Zak transforms g[n, |; N, M] and w[n, I; N, M]
are completely determined by the g x p functions

Os = g[n +sK,l +rM/p; N, M] (8.23)

and
wg = w[n +sK, I +rM/p; N, M], (8.24)

respectively.
L et usnow, for convenience, chooser =0, 1, ..., p—1;the pfunctionsa,[n, I]
can then be combined into a p-dimensional column vector of functions

a= (a[n, 1] an,1]...a, [N, ID". (8.25)

Likewise, withs =0, 1, ..., g — 1, theq functions gg[n, I] can be combined into a
g-dimensional column vector of functions

& = (go[n, 1] @a[n, 1] ... gga[n, 1D T (8.26)

Moreover, the g x p functions gg[n, ] and we[n, 1] can be combined into the
(g x p)-dimensional matrices of functions

oo, 1] Ju[n, 1] ... dop-anI]
Qo[ 1] Qu[n, 1] ... Gup-a[n,]]
G= . . . . (8.27)
Og-volN 1] Qg—ra[n 1] ... Qg-1p-a[n, 1]
and
U)oo[n, I] w01[n, I] . u)o’p_]_[n, I]
wlo[n, I] wll[n, I] R wl’p_]_[n, I]
W = . . - . , (8.28)
U)q_l’o[n, I] wq_l’]_[n, I] . wq_l’p_]_[n, I]
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respectively. With the help of these vectors and matrices, Egs. (8.19) and (8.20)
can be expressed in the elegant matrix-vector products [cf. Egs. (7.17) and (7.18)]

a=K W' (8.29)

and 1
¢ = BGa, (8.30)

respectively. Note that Eq. (8.29) represents p equationsin g unknowns, whereas
Eq. (8.30) represents g equations in p unknowns. In the case of oversampling
(p > g > 1) thelatter set of equationsis thus underdetermined.

We can now proceed along the same lines as the ones that we followed in
Section 7; we only have to replace the factor «pT/q by K [compare Egs. (7.17)
and (8.29)], which isthe same as replacing the (continuous-time) shifting distance
aT by the (discrete-time) shifting distance N. We thus find, for example, that
the optimum elementary signal gox[n] that corresponds to a given (finite-support)
window function w[n] can be found with the help of therelation KGq, = p(W™)*,
and that thisoptimum elementary signal go,:[N] resembl esbest thewindow function
w[n].

Let us, as an example, choose a Gaussian window function w[n] that is sym-
metrical around the point 2(N — 1):

wln] = e~ (7/PNHO = 5[N —1)* (8.31)

Thediscrete Zak transform w(n, |; N, M] of thisfunction reads

B[n.1: N, M] = e~ @/PNI( = 3[N —1])%), (z; e_”/p> , (8:32)
where we have set
,_ b 1fn-gIN-1
=ny—in 5 N )

We remark that the theta function 6;(z; e_”/p) has zeros for z = w(k + %) —
jr(m+ 2)/p; hence, athough a zero will not be reached for integer values of
n, the value of w[n, I; N, M] will be very small for | in the neighbourhood of
(k+ 2)M and n in the neighbourhood of MmN — 1. In Fig. 6 we have depicted the
discrete Zak transform w[n, |; N, M] for several values of the parameter p, with
N=M=24

Thewidth of the Gaussian window function (8.31) is, roughly, N ./p. It will be
clear that when we truncate the window function to aninterval of length N,, where
N,, ismuch larger than N, /P, the discrete Zak transform of thistruncated window
function will aimost be equal to the one of the untruncated window function.

We now apply the techniques outlined in this section to determine the elemen-
tary signa gope[N] that corresponds to a truncated Gaussian window function w[n]
[cf. Eq. (8.31)]. For convenience, we restrict ourselves to integer oversampling:
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Figure 6: The discrete Zak transform w[n, I; N, M] in the case of a Gaussian
2 1 2

window function w[n] = e~ (m/PN)"(n — sIN—1D (with N = M = 24) for

different valuesof p: @ p=2,(b) p=3,(c) p=4.
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K/N = p > q = 1. Moreover, wechoose N = M = 24. In Fig. 7 we have
depicted the discrete Zak transforms o[, |; N, M] of the optimum elementary
signals gope[N] for different values of the oversampling parameter p, whilein Fig.
8 we have depicted these elementary signals themselves. We remark that the re-
semblance between the el ementary signal and the window function increases with
increasing value of the oversampling parameter p.

|Gope [N, 1; N, M]| |Gopt [N, 1; N, M]|

0.025

///'/%

Z
W 2,

@ (b)

[Gopt [N, 15 N, M]|

0.025

Figure 7: The discrete Zak transform Gon [N, |; N, M] in the case of a Gaussian
2 1 2

window function w[n] = e~ (m/PN)"(n — sIN—1D (with N = M = 24) for

different values of oversamplingp = K/N: (@ p=2,(b) p=3,(c) p=4.
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Figure8: A Gaussianwindow function w[n] = e~ (@/PN)*(n — 3[N — 1])* (with
N = 24, dashed line) and its corresponding optimum elementary signal gop:[N]
(solid line) for different values of oversampling p = K/N:
@p=2([b)p=3()p=4
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9 Coherent-optical set-up

We finally describe a coherent-optical set-up with which Gabor’s expansion coef-
ficients of arastered, one-dimensional signal can be generated.

We first note that Eq. (7.7) allows an easy determination of the array of Gabor
coefficientsa viatheZak transform, especially in the case of integer oversampling
(i.,e. g = 1). Since we arein fact only dealing with Fourier transformations, Eq.
(7.7) enables a coherent-optical implementation. Let us therefore consider the
optical arrangement depicted in Fig. 6, and let us identify the two variablest and
w in the Zak transforms and the Fourier transform, as the x and y coordinates.
Moreover, let us, for the sake of convenience, takea = 1/p and 8 = q = 1, with
which Eq. (7.7) reduces to

t w I
Aal— Z)=T¢s . ne S d
a(_l_, Q) Tot, po; Tw (t, pw; p) (9.

Figure9: Coherent-optical arrangement to generate Gabor’s expansion coefficients
of arastered, one-dimensional signal.

A plane wave of monochromatic laser light is normally incident upon atrans-

parency situated in the input plane. The transparency contains the signal ¢ (x) in
arastered format. With X being the width of this raster and pu X (with i > 0)
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being the spacing between theraster lines, thelight amplitude ¢; (x;, ;) just behind
the transparency reads

¢ (%, i) = rect (%) 3 006 +NX)8( — NpX). 9.2)

An anamorphic optical system between the input plane and the middle plane
performs a Fourier transformation in the y-direction and an ideal imaging (with
inversion) in the x-direction. Such an anamorphic system can be realized as
shown, for instance, using a combination of a spherical and acylindrical lens. The
anamorphic operation resultsin the light amplitude

(X, y) = ff @i (%, ye I MWYis(x — x)dxdy, =

= rect () @(x, prny: X) ©3)

just in front of the middle plane; the parameter y;, contains the effect of the wave
length A of thelaser light and thefocal length f; of thespherical lens: y; = 27 /Af;.
Note that in Eg. (9.3) we have introduced the Zak transform of ¢(x), defined by
Eq. (3.1) with t replaced by X, w replaced by puy;y, and t replaced by X.

A transparency with amplitude transmittance

m(x, y) = rect (%) rect <¥> Xw* (x, PuUyY; %) , (9.9

whereuy, Y = 2t/ X, issituatedinthe middleplane. Just behind thistransparency,
the light amplitude takes the form
X YYs(X Y

p2(X, y) = M(X, Y)ga(X, y) = rect <Y> rect (7) a(y, 7) . (99
where use has been made of Eq. (9.1), with t replaced by X, » replaced by uyy,
and T replaced by X. Note that the aperture rect(x/ X)rect(y/Y) contains one
period of the periodic Fourier transform a(x/ X, y/Y), p periods of the (periodic)
Zak transform ¢ (x, puy:y; X), and p quasi-periods of the (quasi-periodic) Zak
transform w*(X, puyiy; X/p).

One of the reasons for oversampling is the additiona freedom in choosing
the window function w(t). In particular, a window function can be chosen such
that it is mathematically well-behaved; thisis usually not the case for the origina
Gabor expansion with critical sampling. Indeed, since the Zak transform § of
a continuous, square integrable elementary signal g(t) has zeros [18], the Zak
transform w = 1/ T §* [cf. EQ. (3.8)] of the corresponding window function w((t)
has poles, which reflects the bad behaviour of the window function. We remark
that inthe case of oversampling (p > 1) the Zak transform w (X, puy;y; X/p) can
be constructed such that it has no poles, and, hence, that a practical transparency
can indeed be fabricated!

Finally, a two-dimensiona Fourier transformation is performed between the
middle plane and the output plane. Such a Fourier transformation can be realized
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as shown, for instance, using a spherical lens. The light amplitude in the output
plane then takes the form

Yo(Xo, Yo) = % // ©a(X, y)e_j Vo(XoX — yoy)dxdy —

=ZZamksinc<&ﬁ—k> sinc(ﬁﬁ—m) (9.6)
— rnrY % uX
where the sinc-function sinc(z) = sin(;rz)/(;r z) has been introduced; the param-
eter y,, again, contains the effects of the wave length A of the laser light and the
focal length f, of the spherical lens: y, = 27 /1f,. We conclude that Gabor’'s
expansion coefficients appear on arectangular lattice of points

mk = ¢o (kﬂuY, mﬂux) (9.7)
Yo Yo
in the output plane.

We remark that it is not an essential requirement that the input transparency
consists of Dirac functions. When we replace the practically unrealizable Dirac
functions 8(y — npu X) by redizable functionsd(y — npu X), say, then Eq. (9.2)
reads X

@i (X, ¥i) = rect <Y> > (% +nX)d(y; — npuX) (9.8)
and thelight amplitude @1 (X, y) just in front of the middleplane takesthe form [cf.
Eq. (9.3)]

orx. y) = rect () @<, prny: X)d(ny). (99)

The additional factor d(y;y) — the Fourier transform of d(y) — can easily be
compensated for by means of atransparency in the middle plane.

The technique described in this section to generate Gabor’s expansion coeffi-
cients, fully utilizes the two-dimensional nature of the optical system, its parallel
processing features, and the large space-bandwidth product possible in optical
processing. The technique exhibits a resemblance to folded spectrum techniques,
where space-bandwidth products in the order of 300 000 are reported [13]. In the
case of speech processing, where speech recognition and speaker identification are
important problems, such a space-bandwidth product would alow us to process
speech fragments of about 1 minute.



10 Conclusion

In this paper we have presented Gabor’s expansion of a signal into a discrete set
of properly shifted and modulated versions of an elementary signal. We have
also described the inverse operation — the Gabor transform — with which Gabor’s
expansion coefficients can be determined, and we have shown how the expansion
coefficients can be determined, even in the case that the set of eementary signals
is not orthonormal. The key solution was the construction of a window function
such that the discrete set of shifted and modulated versions of the window function
is bi-orthonormal to the corresponding set of elementary signals. Thus, we have
shown a strong rel ationship between Gabor’s expansion of asignal on the one hand
and sampling of the sliding-window spectrum of the signa on the other.

The Gabor |attice played akey roleinthefirst part of thispaper. Itistheregular
lattice (t = MT, w = k) with QT = 27 in the time-frequency domain, in which
each cell occupies an area of 2. The density of the Gabor lattice is thus equal
to the Nyquist density 1/2z, which, as is well known in information theory, is
the minimum time-frequency density needed for full transmission of information.
Gabor’s expansion coefficients can then be interpreted as degrees of freedom of
thesignal.

We have introduced the Zak transform and we have shown itsintimaterelation
to the Gabor transform. Not only did we consider the Gabor transform and the Zak
transform in the continuous-time case, but we have aso considered the discrete-
time case. Furthermore, we have introduced the discrete Gabor transform and the
discrete Zak transform, by sampling the continuous frequency variable that still
occurred in the discrete-time case. The discrete transforms enable us to determine
Gabor’s expansion coefficients viaafast computer a gorithm, analogousto the fast
Fourier transform algorithm well known in digital signal processing.

Using the Zak transform, we have seen that — at least for critically sampling
the time-frequency domain on the lattice (mT, kQ2) — the Gabor transform, as
well as Gabor’s signal expansion itself, can be transformed into a product form.
Determination of the expansion coefficients viathe product forms may be difficult,
however, because of the occurrence of zeros in the Zak transform. One way of
avoiding the problems that arise from these zeros is to sample the time-frequency
domain onadenser lattice (Ma T, KB2), with the product o8 smaller than 1. Inthis
paper we have considered the specia case e = q/p, with p > q > 1. We have
shownthat inthiscase of oversampling by arational factor, the Gabor transform and
Gabor’s signa expansion can be transformed into sum-of-products forms. Using
these sum-of-product forms, it was possible to show that the Gabor transform and
Gabor’s signal expansion form a transform pair. The properties of denser lattices
have aready been studied in many other papers[2, 3, 14, 22, 23, 25, 26, 27, 30, 35].

The process of oversampling introduces dependence between the Gabor co-
efficients; whereas these coefficients can be considered as degrees of freedom in
the case of critical sampling, they can no longer be given such an interpretation
in the case of oversampling. In controlling the dependence between the Gabor
coefficients, we were able to avoid the problems that arise from the occurrence
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of zeros in the Zak transform. In particular it was shown how the window func-
tion that appears in the Gabor transform, can be constructed from the elementary
signal that is used in Gabor’'s signa expansion. The additional freedom caused
by oversampling, allowed us to construct the window function in such away that
it is mathematically well-behaved. Moreover, it was shown that for a very large
oversampling the window function can become proportional to the elementary sig-
nal; thisresult is in accordance with the continuous analogue of Gabor’s signal
expansion.

Finally, acoherent-optical arrangement was described which isableto generate
Gabor’'s expansion coefficients of a rastered, one-dimensiona signal via the Zak
transform. The technique described there — which resembles folded spectrum
techniques — fully utilizes the two-dimensiona nature of the optica system, its
parallel processing features, and the large space-bandwidth product possible in
optical processing. Dueto the possibility of avoiding the problemsthat arise from
the occurrence of zeros in the Zak transform, the required optical transparency can
indeed be fabricated.

We concludethispaper by drawing attentionto somerelated topics: thewavel et
transform of a signa and the way of representing a signa as a discrete set of
wavelets. There is some resemblance between these topics and the ones that
were presented in this paper. But, whereas the Gabor transform and the dliding-
window spectrum lead to atime-frequency representation of thesignd, thewavel et
transform leads to a time-scale representation. And whereas the Gabor lattice is
linear both in the time and the frequency variable, the lattice that is used in the
wavelet representation is nonlinear. An excellent review of the wavelet transform
can befound in[14].
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Appendix A. The second bi-orthonor mality condition (2.8)

We will show that the first bi-orthonormality condition (2.7), which in product
form reads [see Eq. (3.8)]

Tw*{t, w; TG, w; T) =1,

impliesthe second bi-orthonormality condition (2.8)
DO i ) gm(t2) = 8(tz — ).
m k
We start with the |eft-hand side of the second bi-orthonormality condition (2.8)

Z Z Wi (t) Ok (t2) = Z Z w*(t, — mT)e_j thlg(tz _ mT)ej kQt,
m k m k

After expressing the window function w(t; — mT) by means of its Zak transform
w(ty, w; T) [cf. EQ. (3.3)], the latter expression takesthe form

Z Z [5 / W(ty, w; T)e™ ) m‘”wa] e 1KQtg, _ mT)el kS22,
m  k Q

We rearrange factors

Z ej KQ(t, — tl)é / W*(ty, w: T) |:Z g(t, — mT)ej ma)Ti| dow
k Q m

and recognize [cf. EQ. (3.1)] the Zak transform §(t,, w; T) of the function g(t,)

. 1
3 eike(t - tl)a / B*(t, @; TY(t, w; Tdw.
k

Q

We replace the sum of exponentias by a sum of Dirac functions
1 /. -
T ané(tz — 1 — nT)§ /g; w*(ty, w; T§(t2, w; T)dw
and replace thevariablet, intheintegral by t; +nT
1 /. -

T ané(tz -t — nT)§ /g; w*(ty, w; Tt +nT, w; Tdw.

Weusethequasi-periodicity property [cf. Eq. (3.2)] of theZak transform §(t;, w; T)
l .
D st -t — nT)< / T (ty, ; TG, »; T)el " Tdw
n Q

and substitute from the product form (3.8) of thefirst bi-orthonormality condition

1 .
Z(S(tz — t]_ — nT)_ / eJ andC()
n Q Jo
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We evaluate the integral
> 8t —tp —nT)s,

and conclude that the expression reduces to the required Dirac function

8(t — ty).
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Appendix B. Derivation of condition (7.4)

In Gabor’s signal expansion (7.2) we substitute from the Gabor transform (7.3)
=3 > U o(t)w*(t' —maT)e™ ) kﬂm/dt’] gt — maT)el KBS
m k

and require that this relationship should hold for any arbitrary signal ¢(t). We
rearrange factors

p(t) = /@(t/) |:Z w*(t' —maT)g(t — moeT)i| |:Z e IkBQ - t)i| dt’

k

and replace the sum of exponentias by a sum of Dirac functions

o) = /q)(t’) [Z w*(t' — maT)g(t — mozT)i| [% D6 (t’ —t- k%)} dt’.
m k

We rearrange factors again

pt) = %Z / ot |:Z w* ' — maT)g(t — moeT)i| 8 (t’ —t— k%) dt’
k m
and evaluate the integral
o) = %Zgﬁ (t + k%) |:Z w* (t + k% — mozT) gt — moeT)i| .
k m

Thelatter relationship holdsfor any signal ¢(t) if and only if thek = O termin the
summation over K is the only nonvanishing term, which immediately leads to the

condition

where 8 isaKronecker delta, with 8o = 1 and §, = Ofor k £ 0.
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Appendix C. The sum-of-products form (7.7)

In the Fourier transform (2.11) of the array an, we substitute from the Gabor
transform (7.3)

ax,y)=» »_ U oWt — maT)e "ﬂmdt] e~ i 2m(my —kx)
m k

and rearrange factors

ax,y) =) [f POw*(t —maT) {Ze—i k(psat — 27TX>} dt} e—i2rmy,
k

m

We replace the sum of exponentials by a sum of Dirac functions

ax,y) =y [f e(OW*(t — maT) {% 3 (t C x4+ k%)] dt} o—i2rmy
k

m

and rearrange factors again

ax, y) = %Z [Z f pOw*(t — maT)s <t — (X + k)%) dt} e—j2Tmy.
m k

We evaluate the integral

ax,y) = %Z |:Zg0 ((X + k)%) w* ((X + k)% _ maT>i| e—l2Tmy
m k

and rearrange factors again

.
Ay =530 (x

k

T
B
< [; w* (x% - [m _ Lﬁ] aT) e—i[m— k/oeﬁ]oeTy(sz/oe)} _
We replace 1/ap by p/q

) = 3 Yo (xg g ) T IT/DYE/
k

4 kI) o IK(T/B)Y(Q /)
B

X |:Z w (xI — [m _ kE] aT) el [Mm— k(p/Q)]OlTy(Q/Ol)i|
B q

m

and replace the summation over k by a double summation over s and n through the
substitutionk = nqg + s, where s extends over an interval of lengthq
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A(x, y) = %Z T (X% L g+ s)%) i (NG +8)(T/By (/)

n s=<qg>
y [Z w (x% _ [m g+ S)g] aT) ol [m— (g + s)(p/q)]aTy(Q/a)} ,

We substitutem — np by —k

Ay =52 ¥ v (X% T [n T g] q%> e~ iIn+ (/9] @T/By(@/)

n s=<qg>

x [Z w (x% + [k + sg] aT) e~ 1 k+s( p/q)]oeTy(Q/a)}

k

and rearrange factors, while using the relation ap = q/8

é(X, y) == I Z Zq) <(X + S)% + napT> e_j nOlpTy(Q/o()

'3 s=<g> n

X [Z w ((x + s)% + kaT) e k“TY(Q/Oé)}

k

*

Inthelast expression werecognize the definitions[ Eq. (3.1)] for the Zak transforms
O(XT/B, ¥y /a; apT)and w(XT/B, y2/a; aT) of thesigna ¢(t) and thewindow
function w(t), respectively, and can write

_ T« . T Q . T @
ax.y) =5 > qo((XJrS)E,yg,apT)w ((X+s)g,y§,oﬁ)
Ss=<q>

or, with1/8 = ap/q,

_ apT - apT Q > - < apT Q )

aix,y)=— ((x+s)—, —apT Jw* [ (X+8)—, y—;aT ).
=3 S_Zq:f g VaioP T Ve

We finaly replace y by y + r/p and use the periodicity of the Zak transform
@o(XapT/q, Yy /a; apT), which leads to the result

P q

. apT @ >~*< apT [ r]Q )
X X+S)—,y—;apT 0" | (X+S)—, |Y+ —| —;aT|.
Zw( Vg ioP a1V ole

S=<(q>
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Appendix D. The sum-of-products form (7.8)

In Gabor’s signa expansion (7.2) we substitutefrom the inverse Fourier transform
(2.13)

OEDEY [//é(x, y)el 2z (my — kX)dxdy] g(t — maT)el KBS
m k 1J1

and rearrange factors
p(t) =

_ A(X, t —maT j2rmy —jk2rx — Q) dxdyv.
/l/la(x y) [Xm:g( maT)e ”:XK:e xdy

We replace the sum of exponentials by a sum of Dirac functionsand recognize the
Zak transform of the elementary signal g(t) [cf. Eq. (3.1)]:

_ [ [ax. vty _k
@(t)—fl/la(X,y)g<t,ya,ozT) |:2k:8<x Tt+k>i|dxdy.

We rearrange factors again and substitute from the periodicity property (2.12) of
ax,y)

_ 5 _B a (e VS
qa(t)—/l[ik:fla(wrk, y)$ <x+k Tt)dxi|g<t,ya,ozT> dy

and we replace the summation over k together with the integral over the finite
x-interval by an integral over the entire x-axis

) = / [/ ax, y)é (x — Et) dx] g (t, yg; aT) dy.
1 T o

Evaluation of the resulting integral over x yields the intermediate result

e = /é (Et y) d (t, yg; aT) dy.
1 \T o

We now write down the definition of the Zak transform [cf. Eq. (3.1)]
(0 X— ’ yO_ 7 (04 pT =
B o

T @ T T\ _j
= ¢ x=.y—g— ) = 2 ) e INA(T/B)Yo(82/at)
w(X ,yoa,qﬂ> Xn:q)((XJrnq)ﬂ)e

and substitute from the intermediate result above
N T Q
q) X_v yO_v apT -
B o
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=2 Ué@(xmq)l, y) G((X+nq)1, yg;aT) dy]
— L \T p B
e~ 1naA(T/B)Yo(R2/a).

We rearrange things, using therelation 1/8 = (p/Q)«,
~< T Q >
@ X—, yO_v OlpT -
B o

T Q ;
= Z [/é(x +nq, y)§ <XE + pna T, y—; aT) dy] e~ 127PNYo
n 1 o

and usethe periodicity property (2.12) of a(x, y) and the quasi-periodicity property
of g(xT/B, yQ/a; aT) [cf. Eq. (3.2)]

go X_v yO_vapT =
B o
acx. W [ x v ipny(Q/a)aT gy | o—i27pny.
:Z la(x,y)g Xg’y?‘ﬂ e dy|e o,

We rearrange factors

¢ (x; yo%; apT> = /lé(x, ¥)§ (X%, y%; aT) [Z el 2mnp(y — VO)} dy

n

and replace the sum of exponentias by a sum of Dirac functions
am Q
B o

T Q 1 n
= [ac, y)a(x= y=aT) [ =3 6 (y—yo— =) |dy.
fla(xy)g(xlg yaa)[p; <y y p)} y

We replace the summation over n by a double summation over r and k through the
substitutionn = kp + r, wherer extends over an interva of length p

~< T Q >
o X=, Yo—:apT | =
B o

T Q 1 r
= [ax, y)a(x—=. y—aT)|= s(y—vyo—k——)|d
fla(x y)g<xﬁ Yo' )[p; 2 (y g p)} Y

r=<p>

and rearrange factors

7 <XI 2, T) =
90 ﬂvyoavap > -
- (. T Q r
[Zfa(x, y)§ <X—, y=; aT) 8 (y —k—Yo— —) dy} :
r=<p> k 1 '8 o p

:%Z
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We use the periodicity of a(x, y) and §(xT/8, y2/a; aT)

~( T Q >
¢ X=, Yo—:apT | =
B o

== Z [Z/a(x y— k)g<x3 (y— k)— aT> (y k— yo—5>dy}

r <p>

and replace the summation over k together with theintegral over thefinite y-interval
by an integral over the entire y-axis

~( T Q >
90 X_v yo_,OlpT -
B o

== Z /a(x y)g(x— y—; ozT)(S(y—yo—Lp)dy.
r <p>

Eva uation of the integral and replacing Y, by y resultsin

()3 3 (o (e b ]2
—y—;«a == LY+ — —, — =«
\B 7 P~ p) "8 plo

or, with1/8 = ap/q,

(e gem) =5 T a(ereg)o (g o5 Gem)
x—— T)=— a{x,y+— + —aTl ).
@( q y “p pr;> Y p J q Y Pl

We finally replace x by x 4+ s and use the periodicity of the Fourier transform
a(x, y), which leads to the result

T Q
@ ((x +S)ﬂ, y—; apT) =
o} o

ry . apT rile
=5 Z X, Y+ =) g(x+s)—. |y+—=|—:aT).
Pz <p> p q Pl



Appendix E. The sum-of-products form (8.19)

In the discrete Fourier transform (8.11) of the array Anx, we substitute from the
Gabor transform (8.6)
am, l; K, M] =

=2 X |:Z€0[n/]W*[n’—mN]e—jann’/Ki|e—jZﬂ(mUM—kn/K)

m=<M> k=<K>

and rearrange factors

amn,1; K, M] =
= Z |:Z§0[n’]W*[n’—mN] { Z e—jan(n’—n)/K” o—j2mrml/M
m=<M> n k=<K>

We replace the sum of exponentials by a sum of Kronecker deltas

a[n, l; K, M] =
=y [Zw[n’]W*[n’ — mN] {K > o —n-— kK]” o—j2rml/M
and r;r:zn;e flctors again k
a[n, l; K, M] =
=K Y [qu)[n’]w«[n’ —mN]§[n’ —n — kK]i| o—i2rml/M
me=w> | T W

We evaluate the summation over n’

an, 1 K, M=K )2 [Zw[n+kK]w*[n+kK —mN]i| g~ 12rmi/M

m=<M> k

and rearrange factors again

é[n,l; K, M] =K Z@[n+kK]e—12ﬂkK(|/M N)
k

m=<M>

We replace K/N by p/q

é[n,l; K, M] =K Z@[n+kK]e—12ﬂkK(|/M N)
k

x|: Z W[n—(m_kp/q)N]ejZW(m—kp/Q)N(l/MN)i|

m=<M>
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and replace the summation over k by a double summation over s and n’ through
the substitutionk = n'gq + s, where s extends over an interval of length q

an,l; K, M] = K Z Zq,[nJrsK +n/qK]e—j2ﬂ(n’q+s)K(I/M N)

S=<qg> n

x|: > W[n—(m—n’p—sp/q)N]ejZ”(m—n/p_Sp/Q)N(I/MN)i| '

m=<M>

We substitutem — n"p by —k

an,l; K,M] =K Z Zq)[n_l,_sK_{_n/qK]e—jz?Tn/CIK(l/M N)

S=<g> n

x [ > WIn +sK +kNJe~ ] 2TkN(/M N)}

k=<M>

and recognize the definitions (8.13) and (8.18) for the discrete Zak transforms
¢[ln+sK,I; pN, M/p] and w[n+sK, |; N, M] of thesignal ¢[n] and thewindow
function w[n], respectively, leading to

an,1; K,M] =K > ¢[n+sK,I; pN, M/p]i*[n + sK, I; N, M].

S=<(q>

We finally replacel by | + r M/p and use the periodicity property of the discrete
Zak transform ¢[n + sK, I; pN, M/ p], which leadsto the result

an,l +rM/p; K, M] =

=K Y gln+sK,I; pN, M/pld*[n + sK, 1 +rM/p; N, M].

S=<(q>
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Appendix F. The sum-of-products form (8.20)

Inthediscrete Gabor expansion (8.9) we substitutefrom theinverse discrete Fourier
transform (8.12)

o= Y Y 1 S Y afn 1 K, Mjel 2r(mI/M —kn'/K)
m=<M> k=<K> MK n=<K>Il=<M>

x G[n — mN]el 27kn/K

and rearrange factors

1 .

_ L [ |- B j2rmN(I/MN)
Q[n] o M K nr:<|<>|:;/|:> a[n ’ I’ K’ M] |:m—Zl\:/I> G[n mN]e i|
« |: Z el 2mk(n’ —n)/K)i|'

k=<K>

We replace the sum of exponentias by a sum of Kronecker deltas and recognize
the discrete Zak transform of the elementary signa g[n] [cf. Eq. (8.13)]:

®[n] = M—lK > a1 K, M]g[n. I; N, M] |:K > o —n— kK]i| :
k

nN=<K>Il=<M>

We rearrange factors again and substitute from the periodicity property of the
discrete Fourier transform &a[n’, I; K, M]

d)[n]:% > [Z > é[n’—kK,I;K,M]5[n’—kK—n]i| a[n, I; N, M]

I=<M> k n=<K>

and we replace the summation over k together with the summation over the finite
n’-interval by asummation over al n’

I=<M> n

®[n] = % Z [Za[n’,l; K, M]s[n’ —n]i| g[n, I; N, M].

Evaluation of the resulting summation over n’ yields the intermediate result

®[n] :% > aln,l; K, MIg[n, I; N, M].

I=<M>

We now write down the definition of the discrete Zak transform (8.17)

gIn.1; pN.M/pl = > @[n + mpN]e™12TMPNI/MN)

m=<M/p>

and substitute from the intermediate result above
@[n,I; pN, M/p] =
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1
= Y [M > an+mpN,I'; K, M]g[n + mpN, I'; N,M]}

m=<M/p> I'=<M>
we—12rmpN(I/MN)
We rearrange things, using therelation pN = gK,

¢[n.1; pN, M/p] =

1
= ) [M > an+mgK,I’; K, MIg[n + mpN, I'; N,M]}

m=<M/p> I'=<M>

e~ i2TmpN(I/MN)

and use the periodicity property of the discrete Fourier transform ajn, I’; K, M]
and the quasi-periodicity property of the discrete Zak transform g[n, I’; N, M])

¢[n.1; pN, M/p] =

= > [% > an, s K, MIgn, I'; N, M]ejanpN(I’/MN)i|

m=<M/p> I'=<M>

we—12rmpN(/MN)

We rearrange factors

> 1 3 ’. & ’.
@In.1; pN, M/pl = > aln, 1’5 K, MIgn, I N, M]

I'=<M>

X[ 3 ejan(l’—l)(p/M)}

m=<M/p>

and replace the sum of exponentials by a sum of Kronecker deltas

= 1 3 ‘. & ‘.
gln.1; pN, M/p] = = > an, I K, MIgn, I'; N, M]

I'=<M>

x [%Za[l’ —1 —mM/p]i| .

We replace the summation over m by adouble summation over r and k through the
substitutionm = kp + r, wherer extends over an interval of length p

gln.l:pN.M/pl =} an.1' K, MIg[n. I N.M]

I'=<M>

x[%z > 8[I’—I—kM—rM/p]i|

k r=<p>
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and rearrange factors

1
@In. 1 PN, M/p] = = >

r=<p>
[Z > an, s K, MIgn, I'; N, M]s[l" — kM — | —rM/p]i|.
k I'=<M>

We use the periodicity of the discrete Fourier transform a[n, I’; K, M] and the
discrete Zak transform g[n, I’; N, M]

1
@In. 1 PN. M/p] = 7 >

r=<p>

k I'=<M>

[Z > an, I’ —kM; K, MIg[n, I — kM; N, M]J5[I' — kM — | —rM/p]i|

and replace the summation over k together with the summation over the finite
I’-interval by a summation over al I’

1
@In. 1 PN, M/p] = = >

r=<p>

[Za[n, I; K, M]@[n, I’; N, M]s[l" — | — rM/p]i| .

|’

Evauation of the summation over I’ resultsin

1
¢[n,1; pN, M/p] = 5 > aln, | +rM/p; K, MIGIn, | +rM/p; N.M]

r=<p>

We finaly replace n by n 4+ sK and use the periodicity property of the discrete
Fourier transform &[n, |; K, M], which yieldsthe result

gln+sK,I; pN, M/p] =

1
== > aln, | +rM/p; K, MIgIn +sK, | +rM/p; N, M].

r=<p>
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