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ABSTRACT

Based on the common Hermite-Gaussian modes, a general class of orthonormal Hermite-Gaussian-type modes
is introduced. Such modes can most easily be defined by means of their generating function. A propagation law
for the generating function is formulated, when these modes propagate through first-order optical systems.
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1. INTRODUCTION

A general class of orthonormal sets of Hermite-Gaussian type modes is introduced, by generalizing the quadratic
form that arises in the generating function of the common Hermite-Gaussian modes. We study how these modes
propagate through first-order optical systems and express the generating function of the set of output modes in
terms of the generating function of the set of input modes.

The requirement of orthonormality yields some additional conditions for the quadratic form of the generating
function. As a result of that, we will be able to express the elements of this quadratic form in terms of four
matrices that can be combined into a symplectic matrix.

The main result of the paper is that this symplectic matrix propagates through a first-order optical system
by a mere multiplication with the system’s ray transformation matrix. From this simple propagation law we can
easily derive how different members from the class of the Hermite-Gaussian-type modes (such as the common
Hermite-Gaussian and Laguerre-Gaussian modes) can be converted into each other.

The propagation law reduces to the well-known bilinear ABCD law in the case of Hermite-to-Hermite
conversion (by means of a separable first-order system) and in the case of Laguerre-to-Laguerre conversion (by
means of an isotropic first-order system). Knowledge of the generating function and in particular its propagation
law may be valuable in the design of more general mode converters.

2. HERMITE-GAUSSIAN-TYPE MODES

The complex field amplitude of the common Hermite-Gaussian modes takes the form

Hn,m(r;wx, wy) = Hn(x;wx)Hm(y;wy) (1)

with
Hn(x;w) = 21/4 (2nn!w)−1/2

Hn

(√
2π x/w

)
exp

(
−π x2/w2

)
, (2)

where Hn(·) are the Hermite polynomials1 and where the column vector r = (x, y)t is a short-hand notation for
the spatial variables x and y, with the superscript t denoting transposition. Note that Hn(x;w) has been defined
such that we have the orthonormality relationship∫

Hn(x;w)Hl(x;w) dx = δnl (3)



with δnl the Kronecker delta. (All integrals in this paper extend from −∞ to +∞.) From the generating function
of the Hermite polynomials, see Ref. [1, Eq. (22.9.17)],

exp
(
−s2 + 2sz

)
=

∞∑
n=0

Hn(z)
sk

n!
, (4)

we can easily find the generating function of the Hermite-Gaussian modes Hn,m(r;wx, wy):

21/2(wxwy)−1/2 exp
[
−(s2

x + s2
y) + 2

√
2π (sxx/wx + syy/wy)− π(x2/w2

x + y2/w2
y)

]
=

∞∑
n=0

∞∑
m=0

Hn,m(r;wx, wy)
(

2n+m

n!m!

)1/2

sn
xsm

y . (5)

The general class of sets of Hermite-Gaussian-type modes Hn,m(r;K,L) that we propose, is most easily
defined by the generating function

21/2(detK)1/2 exp
(
−stMs + 2

√
2π stKr− πrtLr

)
=

∞∑
n=0

∞∑
m=0

Hn,m(r;K,L)
(

2n+m

n!m!

)1/2

sn
xsm

y , (6)

cf. Eq. (5), where we have introduced the column vector s = (sx, sy)t and three (possibly complex) 2×2-matrices
K, L = Lt, and M = Mt. For the common Hermite-Gaussian modes Hn,m(r;wx, wy) we have, see Eq. (5),

K =
[

wx 0
0 wy

]−1

= W−1, L = W−2, M = I. (7)

In most cases, the matrix M is completely determined by K, for which reason we decided not to include M
as a parameter in Hn,m(r;K,L). Indeed, if M = K/4, the generating function represents the two-variable
Hermite-Gaussian modes defined by the matrix2 K/2; note that these two-variable Hermite-Gaussian modes are
not orthogonal. As we will observe later, the condition of mode orthonormality also leads to a direct connection
between the matrices M and K, see Eq. (21).

Generating functions are useful in finding, for instance, the derivative relations for Hn,m(r;K,L)
∂Hn,m(r;K,L)

∂x
∂Hn,m(r;K,L)

∂y

 = −2πHn,m(r;K,L)L

[
x

y

]
+ 2

√
π Kt

[ √
nHn−1,m(r;K,L)

√
mHn,m−1(r;K,L)

]
(8)

by differentiating the generating function with respect to r, and the recurrence relations

2
√

πHn,m(r;K,L)K

[
x

y

]
=

[ √
n + 1Hn+1,m(r;K,L)

√
m + 1Hn,m+1(r;K,L)

]
+ M

[ √
nHn−1,m(r;K,L)

√
mHn,m−1(r;K,L)

]
(9)

by differentiating it with respect to s.

3. PROPAGATION THROUGH FIRST-ORDER OPTICAL SYSTEMS

We let Hermite-Gaussian-type modes Hn,m(r;K,L) propagate through a lossless, first-order optical system –
also called an ABCD-system – and determine the generating function of the set of modes to which the beam
that appears at the output of this system belongs. Any lossless, first-order optical system can be described by
its ray transformation matrix,3 which relates the position ri and direction qi of an incoming ray to the position
ro and direction qo of the outgoing ray: [

ro

qo

]
=

[
A B
C D

] [
ri

qi

]
. (10)



The ray transformation matrix is real and symplectic, yielding the relations

ABt = BAt, CDt = DCt, ADt −BCt = I,
AtC = CtA, BtD = DtB, AtD−CtB = I. (11)

Using the matrices A, B, and D, and assuming that B is a non-singular matrix, we can represent the first-order
optical system by the Collins integral4

fo(ro) =
exp(iφ)√

det iB

∫∫
fi(ri) exp

[
iπ

(
rt

iB
−1Ari − 2rt

iB
−1ro + rt

oDB−1ro

)]
dri, (12)

where the output amplitude fo(r) is expressed in terms of the input amplitude fi(r). The phase factor exp(iφ)
in Eq. (12) is rather irrelevant and can often be chosen arbitrarily. We remark that the signal transformation
fi(r) → fo(r) that corresponds to a lossless, first-order optical system, is unitary, i.e.∫∫

fi,1(r)f∗i,2(r) dr =
∫∫

fo,1(r)f∗o,2(r) dr, (13)

where ∗ denotes complex conjugation.

With a Hermite-Gaussian-type modeHn,m(r;Ki,Li) at the input of an ABCD-system, we denote the output
beam by Hn,m(r;Ko,Lo). To find the generating function of the set of modes to which this output beam belongs,
we write

∞∑
n=0

∞∑
m=0

Hn,m(r;Ko,Lo)
(

2n+m

n!m!

)1/2

sn
xsm

y =
∞∑

n=0

∞∑
m=0

(
2n+m

n!m!

)1/2

sn
xsm

y

exp(iφ)√
det iB

×
∫∫

Hn,m(ri;Ki,Li) exp
[
iπ

(
rt

iB
−1Ari − 2rt

iB
−1ro + rt

oDB−1ro

)]
dri,

where Collins integral (12) has been used. Upon substituting from the generating function (6) we get

∞∑
n=0

∞∑
m=0

Hn,m(r;Ko,Lo)
(

2n+m

n!m!

)1/2

sn
xsm

y =
exp(iφ)√

det iB

∫∫
21/2 (detKi)1/2

× exp
(
−stMis + 2

√
2π stKiri − πrt

iLiri

)
exp

[
iπ

(
rt

iB
−1Ari − 2rt

iB
−1ro + rt

oDB−1ro

)]
dri.

After reorganizing terms we write the right-hand side as

exp(iφ)21/2

(
detKi

det iB

)1/2

exp
(
−stMis + rt

oDB−1ro

)
×

∫∫
exp

[
−πrt

i

(
Li − iB−1A

)
ri

]
exp

[
−i2πrt

i

(
B−1ro + i

√
2/π Kt

is
)]

dri

and it remains to calculate an integral of the form∫∫
exp

(
−πrt

iPri − i2πrt
iq

)
dri =

1√
detP

exp
(
−πqtP−1q

)
,

with P = Li− iB−1A a symmetric matrix whose real part is positive definite and with q = B−1ro + i
√

2/π Kt
is.

(The latter equality is a straightforward extension of the one-dimensional relation, see Ref. [1, Eq. (7.4.2)],∫ ∞

0

exp
[
−(at2 + 2bt + c)

]
dt = 1

2

√
π

a
exp

(
b2 − ac

a

) (
1− erf

b√
a

)
(<a > 0)



to more dimensions.) We thus get for the generating function

exp(iφ) 21/2

[
detKi

det iB det(Li − iB−1A)

]1/2

× exp
(
−stMis + iπrt

oDB−1ro

)
exp

[
−π

(
B−1ro + i

√
2/π Kt

is
)t (

Li − iB−1A
)−1

(
B−1ro + i

√
2/π Kt

is
)]

.

To simplify the expressions in the exponents, we first look to the factor that appears in connection with rt
oro:

−πrt
o

[
−iD + B−1t (

Li − iB−1A
)−1

]
B−1ro = −πrt

o

[
−iD

(
Li − iB−1A

)
+ B−1t

] (
Li − iB−1A

)−1
B−1ro

= −πrt
o

[
−iDLi −

(
DB−1A−B−1t

)]
(BLi − iA)−1 ro = −πrt

o (−iDLi −C) (BLi − iA)−1 ro

= −πrt
o (DLi − iC) (A + iBLi)

−1 ro ≡ −πrt
oLoro.

Next we consider the factor that appears in connection with sts:

−st
[
Mi − 2Ki

(
Li − iB−1A

)−1
Ki

]
s = −st

[
Mi − 2iKi (A + iBLi)

−1 Ki

]
s ≡ −stMos.

Finally, the factor that appears in connection with stro reads

2
√

2πst (A + iBLi)
−1 ro ≡ 2

√
2πstKoro,

and the generating function of the output beam Hn,m(r;K,L) takes its final form

∞∑
n=0

∞∑
m=0

Hn,m(r;Ko,Lo)
(

2n+m

n!m!

)1/2

sn
xsm

y = exp(iφ) 21/2

[
detKi

det iB det(Li − iB−1A)

]1/2

× exp
(
−stMis + iπrt

oDB−1ro

)
exp

[
−π

(
B−1ro + i

√
2/π Kt

is
)t (

Li − iB−1A
)−1

(
B−1ro + i

√
2/π Kt

is
)]

≡ exp(iφ)21/2(detKo)1/2 exp
(
−stMos + 2

√
2π stKoro − πrt

oLoro

)
with

Ko = Ki (A + B iLi)
−1

, (14)
iLo = (C + D iLi)(A + B iLi)−1, (15)

Mo = Mi − 2iKi (A + B iLi)
−1 BKt

i. (16)

We conclude that the generating function (6) keeps its form when the associated Hermite-Gaussian-type modes
propagate through a first-order optical system; we only have to replace the input matrices Ki, Li, and Mi by
the output matrices Ko, Lo, and Mo, respectively, in accordance with the input-output relationships (14–16).
Note that Eq. (15) is in fact the well-known ABCD-law, and that Eqs. (14) and (15) can be combined into[

I
iLo

]
K−1

o =
[
A B
C D

] [
I

iLi

]
K−1

i . (17)

Note that the matrix M plays a different role than the matrices K and L.

4. CONDITIONS RESULTING FROM ORTHONORMALITY

From the requirement that the Hermite-Gaussian-type modes are orthonormal,∫∫
Hn,m(r;K,L)H∗l,k(r;K,L) dr = δnlδmk, (18)



we get additional conditions for the three matrices K, L, and M. To derive these, we consider the expression

∞∑
n=0

∞∑
m=0

∞∑
l=0

∞∑
k=0

(
2n+m

n!m!

)1/2

sn
xsm

y

(
2l+k

l!k!

)1/2

tlxtky

∫∫
Hn,m(r;K,L)H∗l,k(r;K,L) dr

= 2 |detK| exp(−stMs− ttM∗t)
∫∫

exp
[
2
√

2π (stK + ttK∗)r− πrt(L + L∗)r
]

dr,

where t = (tx, ty)t on the analogy of s = (sx, sy)t, and where we have substituted from the generating function (6).
We note that the integral in this expression equals

[det(L + L∗)]−1/2 exp

{
st

[
K

(
L + L∗

2

)−1

Kt

]
s + tt

[
K

(
L + L∗

2

)−1

Kt

]∗
t

}

× exp

{
2st

[
K

(
L + L∗

2

)−1

K∗t

]
t

}

and we get

∞∑
n=0

∞∑
m=0

∞∑
l=0

∞∑
k=0

(
2n+m

n!m!

)1/2

sn
xsm

y

(
2l+k

l!k!

)1/2

tlxtky

∫∫
Hn,m(r;K,L)H∗l,k(r;K,L) dr

= 2 |detK|[det(L + L∗)]−1/2 exp

{
2st

[
K

(
L + L∗

2

)−1

K∗t

]
t

}

× exp

{
−st

[
M−K

(
L + L∗

2

)−1

Kt

]
s− tt

[
M−K

(
L + L∗

2

)−1

Kt

]∗
t

}
.

To get to the orthonormality condition (18), we have to require

M−K
(

L + L∗

2

)−1

Kt = 0, (19)

K
(

L + L∗

2

)−1

K∗t = I, (20)

leading to the conditions

M−1 = M∗ = K∗K−1 = (K∗K−1)t, (21)
L + L∗

2
= KtK∗ = (KtK∗)t, (22)

where we have also expressed the symmetry of the matrices L and M once again. Note that M = KK∗−1 is
completely determined by K, see Eq. (21), which is the reason why we did not include M as a parameter in
Hn,m(r;K,L).

If we express K−1 in its real and imaginary parts, K−1 = a + ib, we immediately get from the realness
of (K∗tK)−1, see Eq. (22), that the matrix abt is symmetric. If we then express L as L = (d − ic)K =
(d− ic)(a + ib)−1, the symmetry of L leads to

atd + btc = dta + ctb and atc− btd = cta− dtb,

while Eq. (22) leads to the requirements

atd− btc + dta− ctb = 2 I and atc + btd = cta + dtb.



From these four conditions we conclude that the 4× 4-matrix[
a b
c d

]
is symplectic and thus satisfies relations of the form (11).

The results in this paper resemble those derived by Wünsche.5 The main difference is that we use as the
Gaussian part exp(−πrtLr), with a matrix L that can be chosen freely if we would only require Eq. (19) and not
necessarily Eq. (20), whereas Wünsche uses a fixed expression of the form exp(−πrtr). Wünsche’s results arise
indeed from ours for the special choice L = I, in which case Eq. (19) leads to M = KKt, yielding the generating
function

exp[−stKKts + 2stK(
√

2π r)− (
√

2π r)t(
√

2π r)/2],

which is compatible to Ref. [5, Eq. (8.4)]. Eq. (20) would yield the additional condition KK∗t = I.

Special cases of Hermite-Gaussian-type modes can easily be recognized. We mention the (separable) Hermite-
Gaussian modes (with curvatures in the x and y directions determined by γx and γy, respectively), for which
the matrices a, b, c, and d are given by

W−1 (a + ib) =
[

cos γx/ exp(iγx) 0
0 cos γy/ exp(iγy)

]
W (d− ic) =

[
exp(iγ1) 0

0 exp(iγ2)

]
; (23)

the common Hermite-Gaussian modes with which we started this paper [see Eqs. (1-5)], arise for the special
choice γx = γy = γ1 = γ2 = 0. Note that for Hermite-Gaussian modes the matrix

L =
[

(1 + i tan γx)w−2
x 0

0 (1 + i tan γy) w−2
y

]
is a diagonal matrix, and that the ABCD-law (15) is useful when such modes propagate through separable
systems (for which A, B, C, and D are diagonal matrices). For (rotationally symmetric) Laguerre-Gaussian
modes (with its curvature determined by γ) we have

w−1 (a + ib) =
cos γ

exp(iγ)
w (d− ic) =

1√
2

[
exp(iγ1) −i exp(iγ2)

−i exp(iγ1) exp(iγ2)

]
; (24)

the special case γ = γ1 = γ2 = 0 has been reported, for instance, in Ref. 6. Note that for Laguerre-Gaussian
modes the matrix L = (1 + i tan γ) w−2 I is a scalar matrix, and that the ABCD-law (15) is useful when such
modes propagate through isotropic systems (for which A, B, C, and D are scalar matrices). We remark that
the discriminating parameters in the above expressions are the widths (wx, wy, w) and the curvatures (γx, γy,
γ) of the modes; the parameters γ1 and γ2 lead to a mere multiplication of the complex field amplitude by a
phase factor that depends on the mode-number (n, m) but not on the space variables r.

5. AN ALTERNATE PROPAGATION LAW

Now that we know that – in the orthonormal case as described in Section 4 – the input matrices Ki, Li, Mi and
the output matrices Ko, Lo, Mo can be expressed in the special forms

Ki,o = (ai,o + ibi,o)−1,
Li,o = (di,o − ici,o)(ai,o + ibi,o)−1,

Mi,o = (ai,o + ibi,o)−1(ai,o − ibi,o),
(25)

where the real matrices ai, bi, ci, di, and the real matrices ao, bo, co, do constitute two real symplectic matrices,
we will combine these expressions with the input-output relations (14) and (15) to find an alternate propagation
law. From Eq. (14) we have K−1

o = (A + BiLi)K−1
i , and after substituting from Eqs. (25) we get

ao + ibo =
[
A + Bi(di − ici)(ai + ibi)−1

]
(ai + ibi)

= A(ai + ibi) + Bi(di − ici)
= (Aai + Bci) + i(Abi + Bdi).



Likewise, combining Eqs. (14) and (15), we have iLo = (C + DiLi)(A + BiLi)−1 = (C + DiLi)K−1
i Ko, and

after substituting from Eqs. (25) we get

i(do − ico)(ao + ibo)−1 =
[
C + Di(di − ici)(ai + ibi)−1

]
(ai + ibi)(ao + ibo)−1,

i(do − ico) = C(ai + ibi) + Di(di − ici)
co + ido = (Cai + Dci) + i(Cbi + Ddi).

We are thus led to the elegant propagation law[
ao bo

co do

]
=

[
A B
C D

] [
ai bi

ci di

]
. (26)

This propagation law resembles Ref. [7, Eqs. (12) and (29)], split up into their real and imaginary parts, where
i(a + ib),d − ic correspond to the ‘matricial rays’ Q,P, see Ref. [7, Eq. (11)]: Q

√
π = iK−1 = i(a + ib)

and P
√

π = λLK−1 = λ(d − ic), with λ the wavelength of the light. The treatment in Ref. 7 is based on a
so-called ‘mode-generating system,’ which is excited by an off-axis point source at its input plane; in our case
of lossless, first-order optics, this system is determined by the matricial rays Q,P that are associated with the
mode that is to be generated. The modes in Ref. 7 then arise by expanding the resulting output field in a power
series of the coordinates of the point source at the input. The kernel in the Collins integral that describes the
mode-generating system thus plays the role of a generating function. The present treatment is directly based
on the general form (6) of the generating function, and we get the additional result that the parameters a,b
and c,d that characterize this generating function correspond to the real and imaginary parts of Q and P, and
constitute a real, symplectic matrix. With r = x and λs = πy

√
2, there is indeed a one-to-one correspondence

between our generating function (6) and the one used in Ref. 7, see in particular Ref. [7, Eq. (22)].

We remark that all sets of Hermite-Gaussian-type modes can be converted into each other by means of
properly chosen first-order optical systems, and we conclude that knowledge of the generating function and in
particular its propagation law (26) may be valuable in the design of mode converters. Further work is in progress,
see for instance Ref. 8, and future papers may also take lossy mode converters7 into account.

6. CONCLUSION

A general class of orthonormal sets of Hermite-Gaussian-type modes has been introduced by formulating a
generalized version of the generating function that yields the common Hermite-Gaussian modes. These sets of
Hermite-Gaussian-type modes remain in their class when they propagate through first-order optical systems,
and a propagation law for their generating function has been formulated. The propagation law is in a form that
suits itself for the design of mode converters.
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