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Abstract

In this paper we review the progress achieved in optical information processing during the last decade by applying fractional
linear integral transforms. The fractional Fourier transform and its applications for phase retrieval, beam characterization,
space-variant pattern recognition, adaptive filter design, encryption, watermarking, etc., is discussed in detail.

A general algorithm for the fractionalization of linear cyclic integral transforms is introduced and it is shown that they
can be fractionalized in an infinite number of ways. Basic properties of fractional cyclic transforms are considered. The
implementation of some fractional transforms in optics, such as fractional Hankel, sine, cosine, Hartley, and Hilbert transforms,
is discussed.

New horizons of the application of fractional transforms for optical information processing are underlined.

1 Introduction

During the last decades, optics is playing an increasingly
important role in computing technology: data storage (CD-
ROM) and data communication (optical fibres). In the area
of information processing optics also has certain advantages
with respect to electronic computing, thanks to its mas-
sive parallelism, operating with continuous data, etc. [1–3].
Moreover, the modern trend from binary logic to fuzzy logic,
which is now used in several areas of science and technology
such as control and security systems, robotic vision, indus-
trial inspection, etc., opens up new perspectives for optical
information processing. Indeed, typical optical phenomena
such as diffraction and interference, inherit fuzziness and
therefore permit an optical implementation of fuzzy logic [4].

The first and highly successful configuration for optical
data processing – the optical correlator – was introduced by
Van der Lugt more than 30 years ago [5]. It is based on the
ability of a thin lens to produce the two-dimensional Fourier
transform (FT) of an image in its back focal plane. This
invention led to further creation of a great variety of opti-
cal and optoelectronic processors such as joint correlators,
adaptive filters, optical differentiators, etc. [6]. More sophis-
ticated tools such as wavelet transforms [7] and bilinear dis-
tributions [8–14], which are actively used in digital data pro-
cessing, have been implemented in optics.

Nowadays, fractional transforms play an important role
in information processing [15–31], and the obvious question
is: Why do we need fractional transformations if we success-

fully apply the ordinary ones? First, because they naturally
arise under the consideration of different problems, for exam-
ple in optics and quantum mechanics, and secondly, because
fractionalization gives us a new degree of freedom (the frac-
tional order) which can be used for more complete charac-
terization of an object (a signal, in general) or as an addi-
tional encoding parameter. The canonical fractional FT, for
instance, is used for phase retrieval [32–42], signal character-
ization [43–56], space-variant filtering [29, 57–77], encryp-
tion [78–85], watermarking [86, 87], creation of neural net-
works [88–93], etc., while the fractional Hilbert transform
was found to be very promising for selective edge detec-
tion [94–96]. Several fractional transforms can be performed
by simple optical configurations.

In this paper we review the progress achieved in opti-
cal information processing during the last decade by appli-
cation of fractional transforms. We will start from the defi-
nition of a fractional transformation in Section 2. Then we
consider, in Section 3, the fractionalization in paraxial optics
described by the canonical integral transformation. Two frac-
tional canonical transforms, the Fresnel transform and the
fractional FT, are commonly used in optical information pro-
cessing. The fractional FT, which is a generalization of the
ordinary FT with an additional parameterα that can be inter-
preted as a rotational angle in the phase plane, is considered
in more detail.

Since the convolution operation is fundamental in infor-
mation processing, there were several proposals to gener-
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alize it to the fractional case. In Section 4 we define the
generalized fractional convolution, and in the subsequent
Sections 5-8, we consider its application for information
processing: phase retrieval, signal characterization, filtering,
noise reduction, encryption, and watermarking.

The second part of the paper will be devoted to the frac-
tionalization procedure of other important transforms. We
will restrict ourselves to the consideration of cyclic trans-
forms, which produce the identity transform when they act
an integer number of timesN. In Sections 9-11, we will
show that there are different ways for the construction of
a fractional transform for a given cyclic transform. In Sec-
tion 12 we briefly mention the common properties of frac-
tional cyclic transforms.

The fractional Hankel, Hartley, sine and cosine, and
Hilbert transforms, which can all be implemented in optics,
will be considered in Section 13. Finally, we discuss the main
lines of future development of fractional optics in Section 14
and make some conclusions.

2 Fractional transform: a general def-
inition

The word ‘fraction’ is nowadays very popular in different
fields of science. We recall fractional derivatives in math-
ematics, fractal dimension in geometry, fractal noise, frac-
tional transformations in signal processing, etc. In general,
‘fractional’ means that some parameter has no longer a inte-
ger value.

To define the fractional version of a given linear integral
transform, let us consider the operatorR of such a transform,
acting on a functionf (x),

R [ f (x)] (u) =
∫ ∞
−∞

K (x, u) f (x) dx, (1)

with K (x, u) the operator kernel. As an example we men-
tion the Fourier transformation, for which the kernel reads
K (x, u) = exp(−i 2πux). The fractional transform operator
is denoted byRp, wherep is the parameter of fractionaliza-
tion:

Rp [ f (x)] (u) =
∫ ∞
−∞

K (p, x, u) f (x) dx. (2)

We will formulate some desirable properties of this fractional
transform first.

The fractional transform has to be continuous for any real
value of the parameterp, and additive with respect to this
parameter:Rp1+p2 = Rp2 Rp1 . Moreover it has to repro-
duce the ordinary transform and powers of it for integer val-
ues of p. In particular, forp = 1 we should get the ordi-
nary transformR1 = R, and for p = 0 the identity trans-
form R0 = I . From the additivity property it follows that∫∞
−∞ K (p1, x, u) K (p2, u, y)du = K (p1 + p2, x, y). Note

that the parameterp, as we will see further, may be given by

a matrix, and the additivity property is then formulated easily
as the product of the corresponding matrices.

As we have mentioned in the Introduction, some frac-
tional transforms arise under consideration of different prob-
lems: description of paraxial diffraction in free space and
in a quadratic refractive index medium, resolution of the
non-stationary Schrödinger equation in quantum mechanics,
phase retrieval, etc. Other fractional transforms can be con-
structed for their own sake, even if their direct application
may not be obvious yet. In particular, in Section 9 we con-
sider a general algorithm for the fractionalization of a given
linear cyclic integral transform. The application of a partic-
ular fractional transform for optical information processing
then depends on its properties and on the possibility of its
experimental realization in optics.

3 Fractionalization in paraxial optics:
the canonical integral transform

Analog optical signal processing systems are often described
in the framework of paraxial scalar diffraction theory. A typ-
ical subset of such a system is displayed in Fig. 1 and con-
tains a thin lens with focal distancef , preceded and fol-
lowed by two sections of free space with distancesz1 and
z2, respectively. Note that the conventional Van der Lugt cor-
relator [5, 6], mentioned in the Introduction, is constructed
by a cascade of two such subsets, with each subset forming
an FT system (z1 = z2 = f ) and with a filter mask inserted
between them. A monochromatic optical field in a transversal

z1 z2

finput output

Figure 1: A typical optical information processing system.

plane (x, y) is then described either by a complex field ampli-
tude f (x, y) for the coherent case, or by the two-point corre-
lation function0(x1, x2; y1, y2) = < f (x1, y1) f ∗(x2, y2) >

for the partially coherent case, where the asterisk denotes
complex conjugation and<> indicates ensemble averag-
ing; note that these cases correspond to a deterministic or
a stochastic signal description in signal theory, respectively.

Under the paraxial approximation of scalar diffraction
theory, the complex amplitudef (xin, yin) of a monochro-
matic coherent optical field at the input plane of the setup
depicted in Fig. 1 and the complex amplitudeFM (xout, yout)

at the output plane of it, are related by the input-output rela-
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tionship [97]

FM (xout, yout) = RM [ f (xin, yin)] (xout, yout)

=
∫ ∞
−∞

∫ ∞
−∞

KMx (xin, xout) KMy(yin, yout)

× f (xin, yin) dxin dyin, (3)

where the kernelKMx (xin, xout) takes the form

KMx (xin, xout) =



1√
ibx

exp

(
iπ

axx2
in + dxx2

out− 2xoutxin

bx

)
, bx 6= 0,

1√|ax|
exp

(
iπ

cxx2
out

ax

)
δ

(
xin −

xout

ax

)
, bx = 0,

(4)

with

Mx =
(

ax bx

cx dx

)

=
(

1− z2/ fx λ(z1+ z2− z1z2/ fx)

−1/λ fx 1− z1/ fx

)
(5)

andλ the optical wavelength, and where similar expressions,
with x replaced byy, hold for the kernelKMy(yin, yout) and
the matrixMy. Note that the optical wavelengthλ enters the
expressions forb andc as a mere scaling factor; very often,
we like to work with reduced, dimensionless coordinates, in
which caseb andc take a form that would also be achieved
by assigning an appropriate value toλ. We remark that the
application of cylindrical lenses,fx 6= fy, permits to per-
form anamorphic transformations.

The coefficientsax, bx, cx, anddx that arise in the ker-
nel (4), are entries of the general, symplectic ray transforma-
tion matrix [98] that relates the position(x, y) and direction
(ξ, η) of an optical ray in the input and the output plane of a
so-called first-order optical system, and we have
(

xout

ξout

)
=
(

ax bx

cx dx

)(
xin

ξin

)
= Mx

(
xin

ξin

)
(6)

and a similar relation for the other dimension, withx andξ
replaced byy andη, respectively. For separable systems, to
which we restrict ourselves throughout, symplecticity reads
simply axdx − bxcx = 1 and aydy − bycy = 1. The
transform described by Eq. (3) is known by such names as
canonical integral transform and generalized Fresnel trans-
form [97–100].

Special cases of canonical integral transform systems
include

• an imaging system (1/z1 + 1/z2 = 1/ f , and hence
ad = 1 andb = 0);
• a simple lens (z1 = z2 = 0, and hencea = d = 1 and

b = 0);

• a section of free space (f →∞, and hencea = d = 1
andc = 0), which is also known as a parabolic system
[97] and which in the paraxial approximation performs
a Fresnel transformation;
• a FT system (z1 = z2 = f , and hencea = d = 0 and

bc = −1), and more generally, a fractional FT sys-
tem [15–18] (z1 = z2 = 2 f sin2(α/2) [22], and hence
a = d = cosα and bc = − sin2 α), which is also
known as an elliptic system [97]; the common case for
which b = −c = sinα, follows when we normalize
x/ξ with respect toλ f sinα, and can also be achieved
by formally choosingλ f sinα = 1;
• a hyperbolic system [97], witha = d = coshα and

bc= sinh2 α.

To treat the propagation of partially coherent light
through first-order optical systems, it is advantageous to
describe such light not by its two-point correlation func-
tion0(x1, x2; y1, y2) as mentioned before, but by the related
Wigner distribution (WD) [101, Chapter 12]; of course, the
coherent case considered in Eq. (3), is just a special case of
this more general, partially coherent case. The Wigner dis-
tribution of partially coherent light is defined in terms of the
two-point correlation function by

W(x, ξ ; y, η)

=
∫ ∞
−∞

∫ ∞
−∞

0(x + x′/2, x − x′/2; y+ y′/2, y− y′/2)

× exp[−i 2π(ξx′ + ηy′)] dx′ dy′. (7)

A distribution function according to definition (7) was first
introduced in optics by Walther [8, 9], who called it the
generalized radiance. The WDW(x, ξ ; y, η) represents par-
tially coherent light in a combined space/spatial-frequency
domain, the so-called phase plane, whereξ, η are the spatial-
frequency variables associated to the positionsx, y, respec-
tively.

The WD is closely related to another bilinear distribution,
the ambiguity function (AF) [101, Chapter 12], which was
also applied to the description of optical fields [10] and which
is related to the WD by a combined FT/inverse FT. Note
that the introduction of the WD and the AF in optics [8–14]
has allowed to describe – through the same function – both
coherent and partially coherent optical fields, and to unify
approaches for optical and digital information processing.

It is well known that the input-output relationship
between the WDsWin(x, ξ ; y, η) andWout(x, ξ ; y, η) at the
input and the output plane of a separable first-order optical
system, respectively, reads [12–14]

Wout(x, ξ ; y, η) = Win(dxx − bxξ,−cxx + axξ ;
dyy− byη,−cyy+ ayη), (8)

which elegant expression can be considered as the counter-
part of the canonical integral transform (3) in the phase plane,
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valid for partially coherent and completely coherent light. A
similar relation holds for the AF [10].

Every separable, first-order optical system is described
by a set of 2× 2 matricesM , one for each transversal coor-
dinate, whose entries are real-valued and whose determi-
nants equal 1, and we have the important symmetry property
K ∗M (xin, xout) = KM−1(xout, xin). The cascade of two such
systems is characterized by the matrix productM3 = M2M1,
which expresses the additivity of first-order optical systems.
We might say that each separate subsystem performs a sep-
arate fraction of the total canonical integral transform that
corresponds to the system as a whole. We may demand that
in distributing the total canonical transform over the separate
subsystems, certain rules of the dividing procedure should
hold, for example, that all fractional subsets should be iden-
tical and be defined by the same matrix [102]. It is often pos-
sible to separate the original setup into equal subsets char-
acterized by a one-parameter matrix; this is in particular the
case for one-parameter systems like the parabolic, the elliptic
and the hyperbolic system.

It is easy to see from Eq. (4) that two canonical systems
whose parameters are related asb1/a1 = b2/a2, produce the
same transformation of the complex amplitude of the input
field, and differ only in a scaling (determined byb2/b1) and
an additional quadratic phase shift [51,103]:

RM1 [ f (xin)] (xout) =
b2

b1
exp

[
i x2

2b2
1

(d1b1− d2b2)

]

× RM2 [ f (xin)]

(
b2

b1
xout

)
. (9)

In this sense the elliptic (fractional FT), parabolic (Fresnel
transform), and hyperbolic systems with the sameb/a, deter-
mined by the angleα or the propagation distancez, behave
similarly.

The fractional FT and the Fresnel transform are usually
applied in optical information processing due to their simple
analog realizations. Since both of them belong to the class of
canonical integral transforms, we summarize the main the-
orems for the canonical transform in Table 1. For simplic-
ity, we consider only the one-dimensional case, and we will
do the same in the rest of the paper if the generalization
to the two-dimensional case is straightforward. The eigen-
functions of the linear canonical transform were considered
in [99,104].

4 Fractional Fourier transform and
generalized fractional convolution

Since the FT plays an important role in data processing,
its generalization – the fractional FT – was probably the
most intensively studied among all fractional transforms.
Although the FT can be divided into fractions in differ-
ent ways, the canonical fractional FT certainly has advan-

1. linearity

RM
[∑

j µ j f j (x)
]
(u) =∑ j µ j RM

[
f j (x)

]
(u)

2. Parseval’s equality∫ ∞
−∞

f (x) g∗(x)dx =
∫ ∞
−∞

FM (u)G∗M (u)du

3. shifting

RM [ f (x − x◦)] (u)
= exp[iπ(2ux◦ − ax2◦)c] RM [ f (x)] (u− ax◦)

4. scaling

RM [ f (µx)] (u) = (1/µ)RMµ [ f (x)] (u)

with Mµ =
(

a b
c d

)(
1/µ 0

0 µ

)

5. differentiation

RM
[

dn f (x)

dxn

]
(u)

= (2π i )n
[
−cu+ a

2π i

d

du

]n

RM [ f (x)] (u)

Table 1: Canonical integral transform: main theorems

tages for application in optical information processing. First,
because this fractional FT can easily be realized experi-
mentally by using simple optical setups [22], and secondly,
because it produces a mere rotation of the two fundamental
phase-space distributions: the WD and the AF.

The canonical fractional FT was introduced more than 60
years ago in the mathematical literature [19]; after that, it was
reinvented for applications in quantum mechanics [20, 21],
optics [15,16,18], and signal processing [23]. After the main
properties of the fractional FT were established, the perspec-
tives for its implementations in filter design, signal analysis,
phase retrieval, watermarking, etc., became clear. Moreover,
the use of refractive optics for analog realizations of the frac-
tional FT opened a way for fractional Fourier optical infor-
mation processing. In this section we will point out the basic
properties of the fractional FT and its applications in optics.

In the one-dimensional case we define the fractional FT
of a signal f (x) as

Fα(u) = Rα [ f (x)] (u) =
∫ ∞
−∞

K (α, x,u) f (x) dx, (10)

where the kernelK (α, x, u) is given by

K (α, x,u) = exp(iα/2)√
i sinα

exp

[
iπ
(x2+ u2) cosα − 2ux

sinα

]
.

(11)
Here we use reduced, dimensionless variablesx andu. Note
the slight change in notation in comparison to Section 2; it
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will soon be clear that in the case of the fractional FT we
prefer to use the fractional angleα = p (π/2).

The fractional FT can be considered as a generalization
of the ordinary FT for the parameterα, which may be inter-
preted as a rotation angle in the phase plane [22]. This can
easily be seen by considering the WD (or the AF) and by not-
ing that a fractional FT system is a special case of a first-order
optical system witha = d = cosα andb = −c = sinα. If
fout(u) = Rα [ fin(x)] (u) is the fractional FT offin(x), then
the WDWin(x, ξ) of fin(x) and the WDWout(u, υ) of fout(u)
are related asWin(x, ξ) = Wout(u, υ), see Eq. (8), wherex
andξ are related tou andυ by the rotation operation

(
u
υ

)
=
(

cosα sinα
− sinα cosα

)(
x
ξ

)
. (12)

A detailed analysis of the fractional FT can be found
in [24, 25, 29–31]. From its properties we mention that for
α = ±π/2, we have the normal FT and its inverse [and also
Fα+π (u) = Fα(−u)], while for α → 0 we have the iden-
tity transformation:F0(x) = f (x). Note also the symme-
try propertiesK (α, x, u) = K (α,u, x) and K ∗(α, x, u) =
K (−α,u, x), and the reversion propertyRα[ f (−x)](u) =
Rα[ f (x)](−u). The analysis and synthesis of eigenfunc-
tions of the fractional FT for a given angle were discussed
in [105–109].

Besides the optical realization of a fractional FT sys-
tem mentioned before in Section 3, other optical schemes
have been proposed [22, 110–113]. In particular, the com-
plex amplitudes at two spherical surfaces of given curva-
ture and spacing are related by a fractional FT, where the
angle is proportional to the Gouy phase shift between the two
surfaces [110–112]. This relationship can be helpful for the
analysis of quasi-confocal resonators and data transmission
between a spherical emitter and receiver.

In the sequel, optical systems performing a fractional FT
will be called fractional FT systems. As we have mentioned
before, the use of cylindrical refractive index media allows to
perform a separable, two-dimensional fractional FT for dif-
ferent angles in the two dimensions [114,115].

One of the most important properties of the FT is related
to the convolution operation on two signalsf (x) andg(x),

h f,g(x) =
∫ ∞
−∞

f (x′) g(x − x′)dx′, (13)

which in the spectral domain takes the form

Rπ/2 [h f,g(x)
] =

{
Rπ/2 [ f (x)]

} {
Rπ/2 [g(x)]

}
. (14)

After the introduction of the fractional FT, several kinds
of fractional convolution and correlation operations were
proposed [57–70]. These operations can be expressed in
the form of a generalized fractional convolution (GFC)
H f,g(x, α, β, γ ), defined by [66]

Rα
[
H f,g(x, α, β, γ )

] = {Rβ [ f (x)]
} {Rγ [g(x)]

}
, (15)

cf. Eq. (14), or equivalently by

Rα−π/2 [H f,g(x, α, β, γ )
]
(u)

=
∫ ∞
−∞

Fβ−π/2(u′)Gγ−π/2(u− u′)du′, (16)

cf. Eq. (13).
It is easy to see that the GFC includes as particular cases

almost all definitions of the fractional convolution and corre-
lation operations proposed before [57–70]. Also the expres-
sions for the cross-WD and cross-AF can easily be given in
terms of the GFC; for the cross-WD and cross-AF expressed
in polar coordinates [34],

Wf,g(r, φ)

= 2
∫ ∞
−∞

Fφ+π/2(u)G∗φ+π/2(−u) exp[i 2πu(2r )] du, (17)

A f,g(r, φ)

=
∫ ∞
−∞

Fφ+π/2(u)G∗φ+π/2(u) exp(i 2πur)du, (18)

we thus have

Wf,g(r, φ) = 2H f,g∗(2r, π/2, φ + π/2,−φ + π/2), (19)

A f,g(r, φ) = H f,g∗(r, π/2, φ + π/2,−φ − π/2), (20)

respectively. The GFC system is represented schematically
in Fig. 2, indicating a general procedure to obtain the GFC.

g > Rγ >

i×
>Rβ>f

> R−α > H f,g

Figure 2: Schematic representation of the generalized frac-
tional convolution system.

In view of the canonical integral transform, a
further generalization of the convolution operation
H f,g(x,M1,M2,M3) can be proposed as [69]

RM1
[
H f,g(x,M1,M2,M3)

]

=
{
RM2 [ f (x)]

} {
RM3 [g(x)]

}
, (21)

where the kernels of the three canonical integral transforms
are parameterized by a matrixM , see Eq. (6). This defini-
tion corresponds to the nonconventional convolution that is
used in real optical systems under the paraxial approximation
of the scalar diffraction theory, where the image and filter
planes are shifted from their conventional positions [68, 71].
As particular cases, the GFC and the Fresnel convolution can
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thus be realized. The introduction of the canonical convo-
lution operation permits to find features similar to the ones
of the fractional Fourier correlators and the Fresnel corre-
lator, proposed several years ago in [71], and to treat eas-
ily the fractional correlator based on the modified fractional
FT [68].

Note that the GFC of a one-dimensional signal is a func-
tion of four variables:x, α, β, andγ . The angle variables
are often considered as parameters, and the function becomes
one-dimensional. As we will see below in Sections 5 and 6,
optical signal processing allows to treat the GFC as a two-
dimensional function, where one of the parameters is con-
sidered as the second coordinate. The choice of the parame-
ters and the number of variables of the GFC depends on the
particular application. In the following Sections 5-8, we will
consider the applications of the GFC for phase retrieval, sig-
nal characterization, pattern recognition, and filtering tasks,
respectively.

5 Fractional power spectra for phase
retrieval

Phase retrieval from intensity information is an important
problem in many areas of science, including optics, quan-
tum mechanics, X-ray radiation, etc. In particular non-
interferometric techniques have attracted considerable atten-
tion recently. In this section we consider the application of
fractional FT systems for the phase retrieval problem.

The squared moduli of the fractional FT, also called frac-
tional power spectra, correspond to the projection of the WD
upon the direction at an angleα in the phase plane. Note also
that the fractional power spectrum is the particular case of
the GFC

|Fα(u)|2 = H f, f ∗(u,0, α,−α). (22)

Fractional power spectra play an important role in frac-
tional optics: they are related to the intensity distributions
at the output plane of a fractional FT system and therefore
can be easily measured in optics. The set of fractional power
spectra forα ∈ [0, π ] is called the Radon-Wigner trans-
form [116], because it defines the Radon transform of the
WD. The WD can be obtained from the Radon-Wigner trans-
form by applying the inverse Radon transform [101, Chapter
8]. This is a basis for phase-space tomography [32], a method
for experimental determination of the complex field ampli-
tude in the coherent case or the two-point correlation func-
tion for partially coherent fields, from the measurements of
only intensity distributions. Application of cylindrical lenses
allows the reconstruction of two-dimensional optical fields.

In the case of coherent optical signals, other methods
for phase retrieval based on the measurements of fractional
power spectra have been proposed. One of them is related to
the estimation of the instantaneous spatial frequency4(x)
from two close fractional power spectra. It was shown that
the instantaneous frequency is related to the convolution of

the angular derivative of the fractional power spectrum and
the signum function [33],

4Fβ (x)

=

∫ ∞
−∞

ξ Wf (x cosβ − ξ sinβ, x sinβ + ξ cosβ) dξ
∫ ∞
−∞

Wf (x cosβ − ξ sinβ, x sinβ + ξ cosβ) dξ

= 1

2
∣∣Fβ(x)

∣∣2
∫ ∞
−∞

∂
∣∣Fα(x′)

∣∣2
∂α

∣∣∣∣∣
α=β

sgn(x − x′)dx′,

(23)

where sgn(x) = ±1 for x ≷ 0. Moreover, since the instanta-
neous frequency is the phase derivative of the fractional FT
of a signal,

2π 4Fβ (x) = dϕβ(x)/dx (24)

whereϕβ(x) = argFβ(x), the complex field amplitude up to
a constant phase factor can be reconstructed from only two
close fractional power spectra [33–35]. This method has been
demonstrated on different examples of multicomponent and
noisy signals and exhibits high quality of phase reconstruc-
tion [35]. Note that a similar method of phase retrieval can
be applied for any one-parameter canonical transform [36].
Thus, in the case of the Fresnel transform we can mention a
non-iterative approach for phase retrieval in free space, based
on the so-called transport-of-intensity equation in optics,
proposed by Teague [37] and then further developed by oth-
ers.

In the case that two fractional power spectra are known
for angles which are not close to each other, iterative meth-
ods of phase retrieval can be applied [38–40]. These methods
are a generalization of the iterative Gerchberg-Saxton algo-
rithm, designed for the recovery of a complex signal from its
intensity distribution and power spectra.

Another method for phase retrieval is based on a sig-
nal decomposition as a series of orthogonal Hermite-Gauss
modes [41]. It has been shown that if a coherent optical sig-
nal contains only a finite number of Hermite-Gauss modes
N, then it can be reconstructed from the knowledge of its 2N
fractional power spectra – associated with the intensity dis-
tribution in a fractional FT system – at only two transversal
points. Note that this method can be generalized to the case of
other fractional optical systems to be discussed below, such
as for example the fractional Hankel one.

A further method for phase retrieval is based on filtering
of the optical field in fractional Fourier domains [42]. Indeed,
the phase derivativedϕ/dx, and therefore the phaseϕ(x) up
to a constant term, can be reconstructed from the knowledge
of the intensity| f (x)|2 and the intensity distributions at the
output of two fractional FT filters with masku

dϕ(x)

dx
= π

∣∣R−α [Fα(u) u] (x)
∣∣2− ∣∣Rα

[
F−α(u) u

]
(x)
∣∣2

x | f (x)|2 sin 2α
.

(25)
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The efficiency of this approach has been demonstrated by
numerical simulations. A simple optical configuration for the
experimental realization of the method was discussed in [42].

6 Fractional power spectra for optical
beam characterization

Since the AF, the WD, and other bilinear distributions of two-
dimensional optical signals are functions of four variables,
their direct application for the analysis and characterization
is limited. Mostly the moments of these distributions are used
for beam characterization. The normalized momentsµpqrs

of the WD are defined by

µpqrs E =
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

W(x, ξ ; y, η)

× xp ξq yr ηs dx dξ dy dη (p,q, r, s≥ 0), (26)

where the normalization is with respect to the total energyE
of the signal (and henceµ0000= 1). Note that in a first-order
optical system, with a symplectic ray transformation matrix,
the total energyE is invariant. The low-order moments rep-
resent the global features of the optical signal such as total
energy, width, principal axes, etc. Thus the second-order
moments of the WD(p+q+r +s= 2) are used as a basis of
an International Organization for Standardization standard of
beam quality. The combination of the second-order moments
(µ1001− µ0110) E, for instance, describes the orbital angu-
lar momentum of the optical beam, which is actively used
for the description of vortex beams [117]. The moments of
higher order are related to finer details of the optical signal.

Note that forq = s = 0 and for p = r = 0 we have
the position and frequency moments, which can easily be
obtained from measurements of the intensities in the signal
and the Fourier domain, respectively:

µp0r 0 E =
∫ ∞
−∞

∫ ∞
−∞

xp yr |F0(x, y)|2 dx dy, (27)

µ0q0s E =
∫ ∞
−∞

∫ ∞
−∞

ξq ηs
∣∣Fπ/2(ξ, η)

∣∣2 dξ dη. (28)

Since in optics only intensity distributions can be measured
directly, it was proposed in [43] to apply fractional FT sys-
tems in order to calculate other moments from the intensity
moments. It was shown that the moments at the output plane
of a separable fractional FT system, with fractional anglesα

andβ in the x- and they-direction, respectively, are related
to the input ones as

µout
pqrs =

p∑

k=0

q∑

l=0

r∑

m=0

s∑

n=0

(
p
k

)(
q
l

)(
r
m

)(
s
n

)

× (−1)l+n (cosα)p−k+q−l (sinα)k+l (cosβ)r−m+s−n

× (sinβ)m+n µin
p−k+l ,q−l+k,r−m+n,s−n+m, (29)

and for the intensity moments in particular we have

µout
p0r 0 =

p∑

k=0

r∑

m=0

(
p
k

)(
r
m

)
(cosα)p−k (sinα)k

× (cosβ)r−m (sinβ)mµin
p−k,k,r−m,m. (30)

From Eq. (30) a set of fractional FT systems can be found
for which the input moments can be derived from knowledge
of the intensity moments in the output, i.e. from fractional
power spectra for selected anglesα andβ. It was demon-
strated [43] that in order to find alln-th order moments –
and we have(n + 1)(n + 2)(n + 3)/6 of such moments –
we needN fractional power spectra, whereN = (n+ 2)2/4
for evenn andN = (n + 1)(n + 3)/4 for oddn. Moreover
N− (n+1) spectra have to be anamorphic, i.e., spectra with
non-equal fractional order for the two transversal coordinates
(α 6= β). In particular, we need 2 fractional spectra to find
the 4 first-order moments, 4 fractional spectra (one of which
has to be anamorphic) to find the 10 second-order moments,
6 fractional spectra (with 2 anamorphic ones) to find the 20
third-order moments, etc.

Regarding the evolution of the second-order moments in
a fractional FT system, we can find the fractional domain
where the signal has the best concentration or where it is the
most widely spread, by calculating the zeros of the angular
derivatives of the central momentsµp0r 0 (α, β). This analy-
sis [33, 34] is helpful, for example, in search for an appro-
priate fractional domain to perform filtering operations [45].
Smoothing interferograms in the optimal fractional domain
leads to a weighted WD with significantly reduced interfer-
ence terms of multicomponent signals, while the auto terms
remain almost the same as in the WD. In general, based on
this approach optimal signal-adaptive distributions can be
constructed with low cost [46].

The way to determine the moments from measurements
of intensity distributions as described by Eq. (30), has been
generalized to the case of arbitrary separable first-order opti-
cal systems [44]. Using an equation similar to Eq. (29) one
can easily determine the evolution of these moments during
propagation of the beam in any first-order optical system;
in particular this was applied to the analysis of optical vor-
tices [47].

In signal processing, the fractional FT spectra were pri-
marily developed for detection and classification of multi-
component linear FM in noise [48,49].

It was shown [50–56] that the fractional FT spectra as
well as the Fresnel spectra are also useful for the analysis of
fractal signals. Thus the hierarchical structure of the fractal
fields and its main characteristics such as fractal dimension,
Hurst exponent, scaling parameters, fractal level, etc., can be
obtained from the analysis of the fractional spectra for the
angular region from 0 toπ/2 [50–53]. Since in this region
the fractional FT spectra and the Fresnel transform spectra
differ only by a scaling parameter, the Fresnel diffraction is
applied for this task [51, 52, 55]. Recently the experimental
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fractal tree of triadic Cantor bars has been constructed from
the observation of the evolution of diffraction patterns in free
space [54]. The general properties of the Fresnel diffraction
by structures constructed through the multiplicative iterative
procedure have been studied in [56].

7 Generalized fractional convolution
for pattern recognition

A great part of the proposed applications of the GFC is
related to pattern recognition tasks [57, 60, 66–74]. It was
shown [66, 67] that for this purpose the following relation
between the angular parameters has to hold

cotα = cotβ + cotγ. (31)

Then the amplitude of the GFC is expressed in the form [66],

∣∣H f,g∗ (x, α, β, γ )
∣∣

= C

∣∣∣∣
∫ ∞
−∞

f

[
sinβ

sinγ

(
x

sinγ

sinα
− y

)]
g∗ (y)

× exp

[
iπy2 cotα (1+ cotγ cotβ)

1+ cot2 β

−iπyx
sin 2β

sinα sinγ

]
dy

∣∣∣∣ , (32)

where C is a constant for fixedα, β, and γ . The
quadratic phase factor under the integral vanishes – which
brings the integral in the form of a windowed FT – if
cotα (1 + cotγ cotβ) = 0. In the case cotα = 0 (and
henceα = π/2 and γ = −β) which is usually con-
sidered,H f,g∗ (r, π/2, β,−β) corresponds to radial slices
A f,g(r, β − π/2) of the cross-AF of the signalsf (x) and
g(x), cf. Eq. (20).

If the position and the size of the object is known, then the
correlation operationH f,g∗(x, α, β,−β) for pattern recog-
nition can be performed in any fractional domainβ, since
the auto-AF has a maximum at the coordinate originr = 0.
Nevertheless, in spite of the fact that the magnitude of the
correlation maximum is the same in any fractional domain,
the forms of the correlation peaks are different. It was shown
[70] on the example of a rectangular function that the nar-
rowest correlation peak is observed in the fractional domain
with fractional angleβ = 0. Note also that the object is
usually corrupted by noise, or is blurred. The characteris-
tics of the noise (except white noise) in different fractional
domains depend on the fractional angle [75]. The fractional
correlation offers the flexibility to choose the domain where
the effect of noise on the correlation operation is minimized.
Moreover, for the recognition of complex or highly degraded
objects, several fractional correlation operations for different
angles can be performed in order to make the right decision.

On the other hand, if the position of the object is
unknown, the choice of the fractional domain is related to

the tolerance to a shift variance of the correlation operation.
A shift of the signal leads to a shift and a modulation of the
cross-AF:

A f (y−s),g(y)(x, ξ) = A f (y),g(y)(x−s, ξ) exp(−iπsξ) (33)

Then the form of the AF radial slices of a shifted signal is
changing except for the angle corresponding to the ordinary
correlation (see Fig. 3).

s u

ξ

β−π/2

Figure 3: Schematic representation of the cross-AF of two
signals, before (solid line) and after (dashed line) shifting of
one of the signals.

Therefore fractional correlations are shift variant forβ 6=
π/2+ nπ . Thus if in the conventional correlator a shift of
the object results in a shift with opposite sign of the cor-
relation peak at the output plane, the shape of the peak is
also changed in the fractional correlator. This effect increases
with decreasing parameterβ fromπ/2 down to 0. For largeβ
the fractional correlator is almost shift invariant, whereas for
smallβ it becomes strongly shift variant. Note that there are
applications, such as cryptography or image coding, where
the location of the object can be as important as its form. In
these cases fractional correlators with fractional parameterβ,
0< β < π/2, must be used.

The shift tolerance condition is usually written in the
form [29, 59, 60]πsσ cotβ � 1, wheres is the signal shift
and σ the signal width. More precisely the shift variance
depends on the fractional order, the signal size, and also the
form of the AF.

The tasks of pattern detection and recognition in optics
are mostly related to two-dimensional signals (images). It is
also possible to choose different fractional orders for the two
orthogonal coordinates and thus to better control the shift
variance. In order to recognize a letter on a certain line of the
text, for example, one can choose the parameterβx = π/2
and βy < π/2 while the filter corresponds to the inverse
fractional FT with parametersβx, βy of a letter situated on a
given line. The exciting results demonstrating the efficiency
of shift-variant pattern recognition in the fractional domain,
can be found in [72–74].

The fractional correlation operation can be performed in
optics by a fractional Van der Lugt correlator [72–74] or by
a nonconventional joint transform correlator [118].
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In order to maximize the Horner efficiency of the correla-
tion operation, phase-only filters are often used. It was shown
in [76] that in general the phase of the fractional FT for
α 6= nπ contains more information about the signal/image
than the amplitude. Therefore the phase-only filters can also
be applied in the fractional Fourier domain. The development
of liquid crystal spatial light modulators allows their rela-
tively simple implementation in optics.

Another particular case of GFC which can be applied for
recognition tasks, is related to the fractional FT of the ordi-
nary correlation operation [23]H f,g∗(x, α, π/2,−π/2). We
believe that this type of operation can be useful for anglesα

at the region nearπ/2 in order to improve the performance
of the conventional correlation operation. Thus it was shown
[77] that forα slightly different fromπ/2, the performance
of the joint-transform correlator improves and higher correla-
tion peaks are observed. Efficient use of the light source and
a larger joint transform spectrum were achieved. Moreover
for these anglesα the correlator still remains shift invariant.
Nevertheless using anglesα far from π/2, leads to confus-
ing results for interpreting the correlation peaks. Indeed, if
the conventional correlation operation does not produce clear
local maximum and is almost constant, then a sharp peak
in fractional correlationH f,g∗(x, α ≈ 0, π/2,−π/2) can
appear.

8 Generalized fractional convolution
for filtering and data protection

Let us consider now the filtering operation in the fractional
domain. The parameters of the GFC in this case depends
on the particular application of filtering. If the filter is used
for improvement of image quality or for manipulation of
the image f in order to extract its features (for example
for edge detection or image deblurring), then we have to
chooseβ = α, in order to represent the result of filtering
in the position domain. Since we are free to assign an arbi-
trary fractional domain for the filter functiong, we can as
well put γ = α. Thus the complete operation leads to the
H f,g(x, α, α, α). The useful properties of this type of GFC,

Rβ
[
H f,g(x, α, α, α)

]
(u) = HFβ ,Gβ (u, α−β, α−β, α−β),

H f,g(x, α, α, α) = H f,g(x, α + π, α + π, α + π),
were proved in [62]. Moreover this type of convolution oper-
ation is associative for a fixed parameterα.

The GFCH f,g(x, α, α, α) has been found very powerful
for noise reduction, if the noise is separable from the signal or
very well concentrated in some fractional domain [57]. It was
shown that in particular for chirp-like noise, the performance
of filtering in a fractional domain is more relevant [24, 29].
Since the fractional FT of a chirp becomes proportional to a
Dirac-delta function in an appropriate fractional domain, it
can be detected as a local maximum on the Radon-Wigner

transform map and then easily removed by a notch filter,
which minimizes the signal information loss.

Several applications of fractional FT filtering systems for
industrial devices have been proposed recently.

Chirp detection, localization, and estimation via the frac-
tional FT formalism are applied now in different areas of
science. Appropriate filtering in fractional domains, which
allows to extract linear chirps out of a multicomponent and
noisy signal, is used to analyze the propagation of acoustic
waves in a dispersive medium [119]. In particular, the non-
linear effects due to the Helmholtz resonators are considered.

A new spatial filtering technique for partially coherent
light in the fractional Fourier domain [120] was proposed
to improve image contrast and depth of focus in projection
photo lithography. Unlike the currently applied pupil method
of filtering in the Fourier domain, the fractional filter can be
placed at any location along the projection optical path other
than the pupil plane. On the examples of designed phase fil-
ters for contact hole and line-space patterns, it was demon-
strated that the fractional FT filtering technique can signif-
icantly improve image fidelity, reduce the optical proximity
effect, and increase the depth of focus.

Optical technologies play an increasing role in securing
information [121]. Also the GFC found its way into security
protection: encryption and watermarking techniques origi-
nally proposed for the Fourier domain, were generalized to
the fractional domain.

Optical image encryption by random phase filtering in
the fractional Fourier domain was proposed in [78,79]. It can
be described by the GFCH f,g(x, α, β, β), where the phase
mask Gβ and the parametersα and β are the encryption
codes. This procedure was further generalized by applica-
tion of the cascaded fractional FT with random phase filter-
ing [80]. In order to encode the image, the fractional trans-
form is performed and random phase is introduced by means
of a spatial light modulator. After repeating this procedure
several times, the encrypted image is obtained. In order to
decode it, not only the information about the used random
phase masks has to be known, but also the parameters and
the types of the fractional transforms. It was demonstrated
that it is impossible to reconstruct the image using the correct
masks but the wrong fractional orders. Without increasing
the complexity of the hardware, the fractional Fourier opti-
cal image encryption system has additional keys provided by
the fractional order of the fractional convolution operation.
Due to the double domain properties of the fractional FT the
algorithm demonstrates the robustness to the blind deconvo-
lution.

Recently, some modifications of the optical encryption
procedures in the fractional Fourier domain were proposed.
Thus in [81] the combination of a jigsaw transform and
a localized fractional FT were applied. The image to be
encrypted is divided into independent non-overlapping seg-
ments, and each segment is encrypted using different frac-
tional parameters and two statistically independent random
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phase codes. The random phase codes, the set of fractional
orders, and the jigsaw transform index, are the keys to the
encrypted data. The encryption by juxtaposition of sections
of the image in fractional Fourier domains without random
phase screen keys, was proposed in [82].

Another encryption technique discussed in [83], is based
on a method of phase retrieval using the fractional FT.
The encrypted image consists of two intensity distributions,
obtained in the output of two fractional FT systems of dif-
ferent fractional orders, where the input of each system is
formed by the 2-D complex signal multiplied by a random
phase mask. The two statistically independent random phase
masks and the fractional orders form the encryption key.
Decryption is based on the correlation property of the frac-
tional FT, which allows to recover the signal recursively.

The implementation of a fully phase encryption system,
using a fractional FT to encrypt and decrypt a 2-D phase
image obtained from an amplitude image, was reported in
[84]. A comparative analysis of the encryption techniques
based on the implementation of the fractional FT has been
done in [85].

Watermarking is another widely applied data protec-
tion operation. A watermarking technique in the fractional
domain was proposed in [86, 87]. In this case, the GFC
H f,g(x, α, α, α) is commonly used. In order to include the
watermark, theα-fractional FT of the image is performed.
The signature has to be such a function which is spread in
the image domain and well localized in the fractional domain
α. Usually the chirp signal which becomes aδ-function in a
certain fractional domain and spread in the image domain is
used. Introducing the watermark and performing the inverse
fractional FT finally we obtain the protected image. Usually
several watermarks in the different fractional FT domains are
introduced. Only the owner of the image, who knows the all
fractional domains will be able to remove them. This water-
marking technique is robust to translation, rotation, cropping
and filtering [86,87].

9 General algorithm for the fraction-
alization of cyclic transforms

We have considered the properties and application of the
fractional FT. Now the following key questions arise :

• Is this fractional FT unique? Or is it possible to gener-
ate other fractional FTs?
• How can we generate the fractional version of other

transformations, for example Hilbert, sine, cosine?
• Do fractional transforms have some common proper-

ties?

In order to answer these questions, we will consider the pro-
cedure of fractionalization of a given transform [27,28]. Sim-
ilar approaches for fractionalization of the integral transform,
and the FT in particular, were reported in [122] and [123],

respectively. We will restrict ourselves to the consideration
of cyclic transforms. There is a long list of linear transforms,
actively used in optics and signal/image processing, which
belong to this class of cyclic transforms. Thus, ifR is an
operator of a linear integral transform, see Eq. (1), this trans-
form is a cyclic one, if it produces the identity transform
when it acts an integer number of timesN:

RN [ f (x)] (u) = f (u). (34)

For example, the Fourier and Hilbert transforms are cyclic
with a periodN = 4, and the Hankel and Hartley transforms
have a periodN = 2. Cyclic canonical transforms of period
N with kernelK (x, u) = KM (x,u), cf. Eq. (4),

K (x, u) = 1√
ib

exp

(
iπ

ax2+ du2− 2ux

b

)
, (35)

wherea + d = 2 cos(2πm/N) andm and N are integers,
were mentioned in [124].

All cyclic transforms have some common properties. In
particular, the eigenvalues of cyclic transforms can be rep-
resented asA = exp(i 2πL/N), where L is an integer.
Indeed, let8(x) be an eigenfunction ofR with eigenvalue
A = |A| exp(iϕ); from Eq. (34) one gets thatAN = 1, and
hence|A| = 1 andϕ = 2πL/N.

In Section 2 we have formulated the requirements for the
fractionalR-transformRp, wherep is the parameter of the
fractionalization: continuity ofRp for any real valuep; addi-
tivity of Rp with respect to the parameterp; reproducibility
of the ordinary transform for integer values ofp: R1 = R
andR0 = I . In the case of cyclic transforms we obviously
demand thatRN = I .

Let us analyze the structure of the kernelK (p, x, u) of a
fractionalR-transform with periodN. Due to its periodicity
with respect to the parameterp, one can representK (p, x,u)
in the form

K (p, x, u) =
∞∑

n=−∞
kn(x, u) exp(i 2πpn/N), (36)

where the coefficientskn(x, u) have to satisfy the system of
N equations [27]

K (l , x,u) =
∞∑

n=−∞
kn(x,u) exp(i 2π ln/N) (37)

with l = 0, . . . , N − 1. From the additivity property for the
fractional transform it follows that the coefficients have to be
orthonormal to each other [27,28],

∫ ∞
−∞

kn(x,u) km(u, y)du= δn,m kn(x, y), (38)

whereδn,m denotes the Kronecker delta.
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Note that all coefficientskn+mN(x, u) for fixed n and an
arbitrary integerm, have the same exponent factor in the sys-
tem of Eqs. (37). Therefore we can rewrite Eq. (37) as

K (l , x, u) =
N−1∑

n=0

exp(i 2π ln/N)
∞∑

m=−∞
kn+mN(x, u). (39)

If we introduce the new variablesCn(x,u), which are the
partial sums of the coefficients in the Fourier expansions (36)
and (37),

Cn(x, u) =
∞∑

m=−∞
kn+mN(x, u), (40)

Eq. (39) reduces to a system ofN linear equations withN
variables. This system has a unique solution [27]

Cn(x, u) =
1

N

N−1∑

l=0

exp(−i 2π ln/N) K (l , x, u). (41)

It is easy to see that the variablesCn satisfy a condition sim-
ilar to Eq. (38):

∫ ∞
−∞

Cn(x, u)Cm(u, y) du= δn,m Cn(x, y). (42)

Note that some partial sums for certain transforms may be
equal to zero. As we will see further on, this is the case for
the Hilbert transform, for instance.

So, if we find the coefficientskn(x, u) that satisfy the
condition (38) and whose partial sums are given by Eq. (41),
we can construct the fractional transform. In general, there
are a number of sets{kn(x,u)} that generate fractional trans-
forms of a givenR-transform.

10 N-periodic fractional transform
kernels with N harmonics

Let us first construct the fractional transform kernel withN
harmonics, whereN is the period of the cyclic transform.
Then every sumCn(x,u) (n ∈ [0, N − 1]) contains only
one elementkn+ϕn(x, u) = Cn(x, u) from the decomposi-
tion (36), whereϕn = mN and m is an arbitrary integer.
Therefore, in the general case, the kernel of the fractional
R-transform withN harmonics can be written as

K (p, x,u) =
N−1∑

n=0

kn+ϕn(x,u) exp[i 2πp(n+ ϕn)/N]

= 1

N

N−1∑

l=0

K (l , x,u)
N−1∑

n=0

exp(−i 2π ln/N)

× exp[i 2πp(n+ ϕn)/N]. (43)

This equation provides a formula for recovering the con-
tinuous periodic functionK (p, x,u) from its N sam-
ples K (l , x, u), under the assumption that the spectrum of
K (p, x,u) contains onlyN harmonics at the frequencies
{ϕ0, 1+ ϕ1, . . . , n+ ϕn, . . . , N − 1+ ϕN−1}.

If we put ϕn = 0 (n = 0, 1, . . . , N − 1), we obtain the
fractional transform with the kernel

K (p, x,u) = 1

N

N−1∑

l=0

exp[iπ(N − 1)(p− l )/N]

× sin[π(p− l )]

sin[π(p− l )/N]
K (l , x, u) (44)

proposed by Shih in [125]. In particular, this formula is used
as the definition of a kind of fractional FT (for the continuous
as well as the discrete case) [125,126].

With N an odd integer and choosingN nonzero coeffi-
cients in the decomposition (36) with indicesj = −(N −
1)/2, . . . ,0, . . . , (N − 1)/2 [corresponding to the indices
n+mN for m= 0 andn = 0, 1, . . . , (N−1)/2, andm= −1
andn = (N − 1)/2+ 1, . . . , N − 1], we obtain the kernel

K (p, x, u) = 1

N

N−1∑

l=0

sin[π(p− l )]

sin[π(p− l )/N]
K (l , x,u). (45)

This equation corresponds to the recovering procedure of a
band-limited periodic function from its values on equidistant
sampling points [127]. In particular, ifK (l , x, u) is real for
integerl = 0, 1, . . . , N − 1, then the kernel of the fractional
transform determined by Eq. (45) is real, too. It also means
that the Fourier spectrum ofK (p, x, u) with respect to the
parameterp is symmetric:|k j | = |k− j |.

As an example, let us consider the general expres-
sion (43) for the kernel of the fractionalR-transform with
period 4 (which is the case for the Fourier and Hilbert trans-
forms):

K (p, x, u) = 1

4

3∑

l=0

K (l , x,u) S(l ) (46)

with S(l ) =
3∑

n=0

exp(−inlπ/2) exp[i (n+ ϕn)pπ/2].

Note that for the Hilbert transform, the number of har-
monics reduces to two, becauseC0(x,u) = C2(x, u) =
0, which follows from K (0, x, u) = −K (2, x, u) and
K (1, x, u) = −K (3, x, u), From Eq. (43) we then conclude
that the fractional Hilbert transform kernel can be written as

K (p, x,u) = exp[i (m1+m3+ 1)pπ ]

× {K (0, x, u) cos[(m3−m1+ 1/2)pπ ]

−K (1, x,u) sin[(m3−m1+ 1/2)pπ ]} , (47)

where m1 and m3 are integers. In particular, for the case
m1 = m3 = 0 (kn = 0 if n 6= 1, 3), one gets

K (p, x,u) = exp(i pπ)

× [K (0, x, u) cos(pπ/2)− K (1, x, u) sin(pπ/2)] , (48)
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while for the casem1 = 0 andm3 = −1 (kn = 0 if n 6=
−1,1), the common form for the fractional Hilbert transform
[94] with a real kernel is obtained:

K (p, x,u) = K (0, x, u) cos(pπ/2)

+ K (1, x, u) sin(pπ/2). (49)

Therefore, even for the same number of harmonics, there are
several ways for the fractionalization of cyclic transforms.

11 Fractional transform kernels con-
struction using eigenfunctions of
cyclic transforms

In the case there exist the set of orthonormal eigenfunctions
of the cyclic transform one can construct fractional kernels
with a number of harmonicsM > N, whereN is the period
of the cyclic transform [27,28].

Suppose that there is a complete set of orthonormal
eigenfunctions{8n} of the operatorR with eigenvalues
{An = exp(i 2πLn/N)}, n = 0,1, . . . (see Section 9). Then
we can represent a kernel of theR-transform of the integer
powerq as

K (q, x, u) =
∞∑

n=0

8n(x) Aq
n8
∗
n(u)

=
∞∑

n=0

8n(x) exp(i 2πqLn/N)8∗n(u). (50)

One of the possible series of kernels for the fractionalR-
transform can then be written in the form

K (p, x, u) =
∞∑

n=0

8n(x) exp[i 2π(Ln/N + ln)p]8∗n(u),

(51)
whereln is an integer and indicates the location of the har-
monics. This kernel satisfies the additivity condition due to
the orthonormality of the eigenfunctions8n(x).

Note that not all cyclic operators have a complete set of
orthonormal eigenfunctions, as it is the case, for example,
for the Hilbert operator, whose eigenfunctions8(x) are self-
orthogonal. Nevertheless, the majority of cyclic transforms
of interest in optics, such as Fourier, Hartley, Hankel, etc.,
have this set. For the Fourier and Hartley transforms,8n(x)
are the Hermite-Gauss modes [15,16]

8n(x) = 21/4 (2nn!
)−1/2

Hn(x
√

2π) exp(−πx2), (52)

where Hn(x) are the Hermite polynomials; for the Hankel
transform of different orders,8n(x) are the normalized
Laguerre-Gauss functions [128,129].

The canonical fractional FT kernel, discussed in the pre-
vious sections, can be obtained from Eq. (51) as a particular

case:Ln = −n andln = 0,

KF (p, x, u) =
∞∑

n=0

8n(x) exp(−inpπ/2)8∗n(u)

= exp(inpπ/4)√
i sin(pπ/2)

exp

[
iπ
(x2+ u2) cos(pπ/2)− 2ux

sin(pπ/2)

]
,

(53)

cf. Eq. (11). The fractional Hankel transform, defined by
Eq. (51) for Ln = −n and ln = 0 and8n(x) being the
normalized Laguerre-Gauss functions, describes the prop-
agation of rotationally symmetric optical beams through a
medium with a quadratic refractive index [128,129]. The ker-
nels of these transforms contain an infinite number of har-
monics.

Let us rewrite Eq. (51) in the form

K (p, x, u) =
∞∑

n=−∞
zn(x,u) exp(i 2πnp/N). (54)

Herezn(x,u) is a sum of the elements8 j (x)8∗j (u) over j ,
where8 j (x) is the eigenfunction of theR-transform with
eigenvalue exp(i 2πn/N). Thus for the case of the canonical
fractional FT,

KF (p, x, u) =
∞∑

n=0

8n(x) exp(−inpπ/2)8∗n(u)

=
0∑

n=−∞
zn(x, u) exp(inpπ/2), (55)

the coefficientszn(x, u) vanish for positiven andzn(x, u) =
8n(x)8∗n(u) for n ≤ 0. As we will see below, the fractional
Hartley transform [27] can be represented in the form




K (p, x, u) =
∞∑

n=0

exp(−iπnp)z−n(x, u)

z−n(x, u) = 82n(x)82n(u)+82n+1(x)82n+1(u).
(56)

It is easy to see from Eq. (54) that we can generate
another kernel series withM harmonics,

K (p, x, u) =
M−1∑

n=0

exp(i 2πnp/M)
∞∑

m=−∞
zn+mM(x, u),

(57)
which satisfy the requirements for the fractional transforms.
Here the sums of the elementsz j (x, u)

kn(M, x, u) =
∞∑

m=−∞
zn+mM(x, u) (58)

are used as the coefficientskn(x,u) in Eq. (36). Note that the
relationship (38) holds for the coefficientskn(M, x,u) and
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km(M, x,u), because they are constructed from the disjoint
series of orthonormal elements.

One can prove that the kernel (57) forp = 1 reduces to
(50). In particular, if{8n} is the Hermite-Gauss mode set and
z−n(x, u) = 8n(x)8∗n(u) for n = 0, 1, . . . andz−n(x,u) =
0 for negativen, then Eq. (57) corresponds to the series of
the M-harmonic fractional FTs proposed in [130],

K (p, x,u) =
M−1∑

n=0

exp[−i 2πnp(1− M)/M ]

×
∞∑

m=0

8n+mM(x)8
∗
n+mM(u)

= 1

M

M−1∑

n=0

exp[iπ(M − 1)(pl − n)/M ]

× sin[π(pl − n)]

sin[π(pl − n)/M ]
KF (n/ l , x,u), (59)

whereKF (n/ l , x,u) is the kernel of the canonical fractional
FT. Application of such types of fractional FTs for image
encryption was reported in [80]. IfM = N (l = 1), we
obtain that the kernel of the Shih fractional transform defined
by Eq. (44) can also be represented as

K (p, x,u) =
N−1∑

n=0

exp[−i 2πnp(1− N)/N]

×
∞∑

m=0

8n+mN(x)8
∗
n+mN(u). (60)

Finally we can conclude that if a complete orthonormal
set of eigenfunctions for a given cyclic transform exists, then
an infinite number of fractional transform kernels with an
arbitrary number of harmonics can be constructed using the
procedure (51). Some examples of fractional FTs whose ker-
nels contain different numbers of harmonics were considered
in [27].

12 Some properties of fractional
cyclic transforms

Although there is a variety of schemes for the construction of
fractional transforms, all of them have some common prop-
erties.

If the coefficientskn(x,u) in the decomposition (36) are
real, then the following relationship holds:

{Rp [ f ∗(x)
]
(u)
}∗ = R−p [ f (x)] (u). (61)

This is the case for the canonical fractional FT, the related
fractional sine, cosine, and Hartley transforms, and the
canonical fractional Hankel transform.

Eigenfunctions of fractional transforms

By analogy with the analysis of the fractional FT eigenfunc-
tions, made in [106, 107], the eigenfunction91/M (x) for
the fractional transformRp for p = 1/M with eigenvalue
A = exp(i 2πL/M), can be constructed from the arbitrary
generator functiong(u) by the following procedure:

91/M (x) =
1

M

M−1∑

n=0

exp(−i 2πnL/M)Rn/M [g(u)] (x).

(62)
In the limiting caseM →∞, one gets the eigenfunction for
any valuep with eigenvalue exp(i 2πpL):

9L
p (x) =

1

N

∫ N

0
exp(−i 2πpL)Rp [g(u)] (x) dp. (63)

In particular for fractional transforms generated by Eq. (51)
(as it was shown by the example for the fractional FT
[107]), the functions9L

p (x) correspond to the elements of the
orthogonal set{aL8L}, where the constant factors depend on
the generator function.

Complex and real fractional transform kernels

We have seen in the previous section that if there exists a
complete orthonormal set of eigenfunctions{8n} for theR-
transform, then any coefficient in the harmonic decomposi-
tion of the fractional kernelkn(x, u) (36) can be expressed
as a linear composition of the elements8 j (x)8∗j (u). For
the kernel of the fractional transform to be real, the Fourier
spectrum of the fractional kernel with respect to the param-
eter p has to be symmetric; this means that|k−n(x,u)| =
|kn(x, u)|. Since the coefficientskn(x,u) with different
indicesn contain disjoint series of the orthogonal elements,
their amplitudes cannot be equal. In the case that there exists
a complete orthonormal set of eigenfunctions{8n} for the
R-transform, the fractional kernel of theRp-transform can-
not be real, even if theR-transform kernel is real.

As we have seen above the fractional Hilbert kernel can
be real, because there is no complete orthonormal set of
eigenfunctions for the Hilbert transform.

13 Fractional cyclic transforms
implemented in optics

Besides the canonical fractional FT discussed in Sections 4
and 11, other fractional cyclic transforms can be performed
by optical setups. Thus the fractional FTs described in Sec-
tions 10 and 11 and represented as a sum of the weighted
canonical fractional FTs for the corresponding parameters
{αn} [see for instance Eqs. (44) and (59)] can be obtained as
an interference of optical beams at the output of the related
canonical fractional FT optical systems. In general the most
fractional cyclic transforms proposed for optical implemen-
tation are closely connected to the canonical fractional FT.
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The two-dimensional fractional FT of a rotationally sym-
metric function leads to the fractional Hankel transform,
analogous to the fact that its two-dimensional FT produces
the Hankel transform [128,129]. The fractional Hankel trans-
form of a function f (r ) is defined as

Rα [ f (r )] (u) = Hα(u) =
∫ ∞

0
K (α, r, u) f (r ) r dr, (64)

where the kernelK (α, r, u) is given by

K (α, r,u) = exp(iα)

i sinα
exp

[
iπ(r 2+ u2) cotα

]

× J0(2πru/ sinα) (65)

with J0 the first-type, zero-order Bessel function. One can
represent the fractional Hankel kernel in the form (51), where
Ln = −n, ln = 0, and8n(x) are the Laguerre-Gauss func-
tions, which are the eigenfunctions of the fractional Hankel
transform.

The fractional Hankel transform inherits the main prop-
erties of the fractional FT [103,128] and can be performed by
the fractional FT setups described in Sections 3 and 4, if the
input optical field is rotationally symmetric. The fractional
Hankel transform can substitute the fractional FT in many
optical signal processing tasks where rotationally symmetric
beams are used.

Since the FT is closely related to sine, cosine, and Hartley
transforms, which are cyclic ones with periodN = 2, several
attempts to introduce the fractional sine, cosine, and Hartley
transforms were made in [25, 26], where the authors sup-
posed that the kernels of these transforms are the real part of
the kernel of the optical fractional FT, the imaginary part of
this kernel, or the sum of these two parts, respectively. Nev-
ertheless, they have mentioned that the transforms defined
in such a manner, are not angle additive, and therefore, in
our view, cannot be interpreted as fractional transforms. The
kernelsKS, KC, andKH of the fractional sine, cosine, and
Hartley transforms (ST, CT, HT) [27, 28, 131], respectively,
which are closely related to the canonical fractional FT with
kernel KF and which are indeed angle additive, are defined
as

ie−iα KS(α, x, u) = 2kα(x, u) sin(2πux/ sinα),
KC(α, x, u) = 2kα(x, u) cos(2πux/ sinα),
KH (α, x, u) = kα(x,u) cas(2πux/ sinα),
KF (α, x, u) = kα(x,u) exp(i 2πux/ sinα),

(66)

where

kα(x, u) =
exp(iα/2)√

i sinα
exp

[
iπ(x2+ u2) cotα

]
, (67)

where, on the analogy of exp(iϕ) = cosϕ + i sinϕ, we have
introduced casϕ = cosϕ + sinϕ, and where, for easy refer-
ence, we have repeated the expression of the canonical frac-
tional FT kernelKF .

Since the fractional ST, CT, and HT can easily be
expressed in terms of the fractional FT, and since optical
realizations of the fractional FT [25] are well known, opti-
cal realizations of the fractional ST, CT, and HT can easily
be constructed. One of the possible schemes for the fractional
HT, based on [27]

Rα
H = exp(iα/2)Rα

F

[
cos(α/2)− i sin(α/2)Rπ

F

]
, (68)

is given in Fig. 4.

f (x) >Rα
F > exp(iα/2) >@

@
>Rπ

F >@
@

∨
cos(α/2)

∨

¡
¡

∨
sin(α/2)

∨
exp(−iπ/2)

∨
¡

¡Rα
H [ f (x)] < <

Figure 4: Schematic representation of a fractional Hartley
transformer. The setup consists of two fractional FTsRα

F and
Rπ

F , two beam splitters, two mirrors, two absorbing plates
cos(α/2) and sin(α/2), and two phase plates exp(iα/2) and
exp(−iπ/2).

As the ST, CT, and HT are widely used in signal pro-
cessing, the application of their fractional versions in sig-
nal/image processing is very promising.

Since, as we have seen in Section 10, the kernel of the
fractional Hilbert transform has only two harmonics, the
number of possible fractionalization procedures is signifi-
cantly reduced. The real kernel of the fractional Hilbert trans-
form introduced in [94,95] and described by Eq. (49) is com-
monly used. Optical setups performing this transform were
proposed in [94, 95]. As the fractional Hilbert transform is
a weighted mixture of the optical fieldf (u) itself and its
Hilbert transformH(u),

Rα [ f (x)] (u) = f (u) cosα + H(u) sinα, (69)

an optical scheme performing the ordinary Hilbert trans-
form [see Fig. 5, withG(ν) = i sgn(ν)] can easily be
adapted to perform a fractional Hilbert transform, by having
the filter functionG(ν) now taking the more general form
exp[iα sgn(ν)] = cosα + i sgn(ν) sinα.

The Hilbert transform can be considered as a convolu-
tion of a function with a step function, which is a model
for a perfect edge. Therefore the Hilbert transform produces
edge enhancement. It was shown that the fractional Hilbert
transform stresses the right-hand and the left-hand slopes
unequally [94–96] and that variation of the fractional order
changes the nature of the edge enhancement. Thus, forα ≈
π/4, π/2, 3π/4, the right-hand edges, both edges, and the
left-hand edges of the input object are emphasized, respec-
tively. In general we can conclude that the fractional Hilbert
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Figure 5: Schematic representation of a (fractional) Hilbert
transformer:z= f , G(ν) = exp[iα sgn(ν)].

transform produces an output image that is selectively edge
enhanced. This property of the fractional Hilbert transform
makes it a perspective tool for image processing and pattern
recognition.

14 New horizons of fractional optics

Fractional optics is a rapidly developing research area. Novel
applications of the fractional transforms for motion detec-
tion and analysis, holographic data storage, optical neural
networking, and optical security (see Section 8) have been
proposed recently. In this section we give a short overview of
the main directions of development of fractional optics.

Fractional Fourier transformers

Significant work has been done to improve fractional trans-
formers.

The effect of the spherical aberration of a lens on the
performance of the fractional Fourier transformation in the
optical systems proposed by Lohmann in [22], was analyzed
in [132]. It was shown that the effect of spherical aberration
on the output intensity distribution of the fractional FT sys-
tem depends on the sign and the absolute value of the aber-
ration coefficient. Moreover, Lohmann’s two types of opti-
cal setups for implementing the fractional FT, are no longer
equivalent if the lenses suffer from spherical aberration.

In the optical systems proposed in [22], the fractional
order is fixed by the ratio between the focal length of the
lens and the distance of free space preceding and following
the lens. This fact introduces a difficulty in the design of frac-
tional Fourier transformers with a variable order. Fractional
FT systems with a fixed optical setup but with different frac-
tional orders, can be obtained by the implementation of pro-
grammable lenses, written onto a liquid-crystal spatial light
modulator [133].

A one-dimensional, variable fractional Fourier trans-
former, based on the application of a reconfigurable electro-
optical waveguide, was proposed in [134]. In general, this
device produces a variable canonical transformation, with a
ray-transformation matrix for whicha = d and for which
the matrix entryb is controlled by the amplitude of an elec-
tric field.

A quantum circuit for the calculation of a fractional
FT whose kernel contains four harmonics, was proposed in
[135].

Propagation through a fractional FT system

The evolution during propagation through fractional FT sys-
tems of different types of beams frequently used in mod-
ern optics, such as flattened Gaussian [136, 137], elliptical
Gaussian [138], and partially coherent and partially polarized
Gaussian-Shell beams [139], has been studied. In particular,
it was shown that the intensity distribution and polarization
properties in the fractional FT plane are closely related to the
fractional order of the fractional FT system and the initial
coherence of the partially coherent beam [139–141].

Several devices for manipulation of optical beams based
on the fractional FT have been proposed recently.

The fractional FT is applied in theπ/2 converter, which
is used to obtain focused Laguerre-Gaussian beams from
Hermite-Gaussian radiation modes [142].

The design of a diffractive optical element for beam
smoothing in the fractional Fourier domain was described
in [143].

An iterative method for the reconstruction of a wave field
or a beam profile from measurements obtained using low-
resolution amplitude and phase sensors in several fractional
Fourier domains, was proposed in [144].

Motion analysis

Several applications of the fractional FT for motion analysis
have been proposed.

A method for the independent estimation of both sur-
face tilting and translational motion using the speckle pho-
tographic technique by capturing consecutive images in two
different fractional Fourier domains, has been proposed in
[145].

In [146] the fractional FT is applied to airborne, synthetic
aperture radar, slow-moving target detection. Since the echo
from a ground moving target can be approximated as a chirp
signal, the fractional FT is used to concentrate its energy. An
iterative detection of strong moving targets and weak ones,
based on filtering in the fractional Fourier domain, has been
proposed.

The application of fractional FT correlators to control
movements in a specific range, has been considered in [147].
Based on the controllable shift variance of fractional corre-
lations, only the movements limited to a specific range are
determined. Fractional FT correlators operating with a log-
polar representation of two dimensional images (fractional
Mellin-based correlator) allow to control the similarity of
objects under rotation and scale transformations. Optically
implemented fractional FT and Mellin correlators, providing
correlation images directly at image acquisition time, have
been proposed to be used in detecting or controlling a spe-
cific range of movements in navigation tasks.
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Beamforming is another application of the fractional FT
indirectly related to motion analysis. Beamforming is widely
used in sensor arrays, signal processing for signal enhance-
ment, direction of arrival and velocity estimation, etc. The
conventional minimum-mean-squared error beamforming in
the frequency domain or the spatial domain has been gen-
eralized to the fractional Fourier domain case [148]. It is
especially useful for radar problems where chirp signals are
encountered. Note that acceleration of the sinusoidal signal
source yields that, due to the Doppler effect, a chirp signal
arrives at the sensor. Such a chirp signal is often transmitted
in active radar systems.

Neural networks implemented fractional FT

Several neural network schemes have been proposed
recently, in which the canonical fractional FT was imple-
mented.

An optical neural network based on the fractional corre-
lation realized by a Van der Lugt correlator that employs frac-
tional FTs, was proposed in [88]. The error back-propagation
algorithm was used to provide the learning rule by which
the filter values are changed iteratively to minimize the error
function.

The replacement of the mean square error with the log-
likelihood and the introduction of parallelism to this network
significantly improve its learning convergence and recall rate
[89]

It was demonstrated in [90] that, due to the shift variance
of the fractional convolution, the fractional Van der Lugt cor-
relator is more suitable than the conventional one for classifi-
cation tasks. For a phase modulation filter, the optimal learn-
ing rate to improve the learning convergence and the clas-
sification performance, can quickly be found by Newton’s
method.

Besides these static networks with fixed weights and the
learning based on the adjustment of the filter coefficients,
another type of neural networks to implement the fractional
FT has been proposed [91]. In this scheme the fractional
FT is used for pre-processing of input signals to neural net-
works. Adjusting the fractional order of the fractional FT of
the input signal leads to an overall improvement of the neu-
ral network performance, as has been demonstrated on the
example of recognition and position estimation of different
objects from their sonar returns. In [92] a comparative analy-
sis has been made of different approaches of target differen-
tiation and localization, including the target differentiation
algorithm, Dempster-Shafer evidential reasoning, different
kinds of voting schemes, statistical pattern recognition tech-
niques (thek-nearest neighbor classifier, the kernel estimator,
the parameterized density estimator, linear discriminant anal-
ysis, and the fuzzyc-means clustering algorithm), as well
as artificial neural networks, trained with different input sig-
nal representations obtained using pre-processing techniques
such as discrete ordinary and fractional Fourier, Hartley
and wavelet transforms, and Kohonen’s self-organizing fea-

ture map. It has been shown that the use of neural net-
works trained by the back-propagation algorithm with frac-
tional FT pre-processing, results in near-perfect differentia-
tion, around 85% correct range estimation, and around 95%
correct azimuth estimation.

The potential application of a spatially varying, fractional
correlation in implementing parallel fuzzy association, has
been explored in [93].

Fresnel and fractional FT holograms

Holographic recording/reconstruction techniques are very
well established for image, Fourier, and Fresnel holograms.
In particular, since the fractional FT and the Fresnel trans-
form belong to the class of canonical integral transforms,
see Eq. (3), one can analyze the feasibility of fractional
Fourier holograms in relation to Fresnel holograms prop-
erties. The fundamentals of Fresnel holograms have been
known for about four decades. In 1965, Armstrong [149]
published a general contribution on the basic formulation
for describing the recording and reconstruction of two and
three-dimensional Fresnel holograms using paraxial approx-
imation. The total complex amplitude at recording step was
formulated as a Fresnel integral. Assuming linearity condi-
tions on the hologram development, the final field for the
reconstructed image was formulated. This general analyti-
cal expression contains the basic contributions to the final
field, namely: illumination conditions of the object, holo-
gram diffraction properties, and illumination conditions of
the hologram. To this respect, one of the major keys for
Fresnel holograms with high reconstruction fidelity is res-
olution, which is determined by the hologram aperture. If the
effect of a finite aperture on the complex amplitude field is
not taken into account the hologram diffraction modulation
turns out to be represented by a Dirac-delta function. Assum-
ing that under a fractional FT regime we are dealing with
a particular scaling defined by the order of the transforma-
tion, one can assert that resolution plays a similar role as in
a standard Fresnel hologram. Taking into account the finite
aperture implies that an intrinsic dependence of the holo-
gram quality (fidelity) on the aberrated reconstructed wave-
front has also to be considered.

Recently, several contributions on these subjects have
been published. An algorithm for digital holography based
on the so-called Fresnelets, which arise when the Fresnel
transform is applied to a wavelet basis, has been developed in
[150]. An experimental digital holography setup was shown,
as well as results for Fresnelet holograms. An interesting
result of this paper is related to the uncertainty relation for
the Fresnel transform as a condition for signal localization.
The condition suggests that Gaussian and Gabor-like func-
tions, modulated with a Fresnel kernel, optimize the process-
ing and reconstruction of Fresnel holograms. This is related
to the illumination conditions of the object and the behavior
of the hologram aperture as an apodizing optical pupil.

Other experiments for implementing Fresnel holograms
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on LCDs have been reported [151]. The hologram is obtained
by back-propagating the object function applying an inverse
Fresnel transform. Results indicate the presence of noise in
the reconstruction due to the limited number of amplitude
levels of the signal (8 bits).

Other authors [152] claim the implementation of multiple
fractional FT holograms. Nevertheless, the lack of informa-
tion related to critical parameters as real illumination condi-
tions, object size, hologram size, type of holographic mate-
rial, and minimum distance between objects for avoiding
aliasing, makes it difficult to arrive to a precise conclusion
on the actual proposed technique.

From the above mentioned results we can assert that
Fresnel and fractional FT holograms show great practical
interest for signal localization, data coding and decoding, and
optical security systems.

Novel fractional transforms

Another direction for further research is the investigation of
novel types of fractional transforms: their properties, appli-
cations, and possible implementations in optics.

The fractional cosine, sine, and Hartley transforms and
their digital implementations were discussed in [27, 28, 131,
153]. It was shown that the fractional cosine and sine trans-
forms are useful for processing one-sided signals, i.e., the
independent variable is an element of [0,∞). From our point
of view, the different types of fractional FT, ST, CT, and
HT, constructed by the general fractionalization algorithm
(see Sections 10 and 12) may be suitable for signal/image
encryption and watermarking. Thus an image watermark-
ing scheme based on different types of fractional discrete
Fourier, Hartley, cosine, and sine transforms was proposed
in [154]. To remove the watermarks in this case, the type
of the used fractional transform and the orders of the frac-
tional domains where signatures were introduced, have to be
known.

Several other fractional transforms have been introduced
recently.

The fractional FT of log-polar representation of a two
dimensional image, generates the fractional Mellin transform
[122,147].

Another fractional transform, the complex fractional FT,
closely related to the canonical fractional FT has been intro-
duced in [155]. Withξ = ξ1+i ξ2 andη = η1+iη2, the kernel
of the complex fractional FT takes the form, cf. Eq. (11)

exp(iα)

i sinα
exp

[
iπ
(|ξ |2+ |η|2) cosα + ξη∗ − ξ∗η

2 sinα

]
.

Based on the approach of eigenfunction kernel decom-
position similar to [27, 28], some new fractional integral
transforms, including the fractional Mellin transform, a frac-
tional transform associated with the Jacobi polynomials,
a Riemann-Liouville fractional derivative operator, and a
fractional Riemann-Liouville integral, have been proposed

in [122]. In the analogy with canonical fractional Fourier
and Hankel transforms the fractional Laplace and Barut-
Girardello transforms have been introduced in [156].

The applications of these transforms in science and engi-
neering is still subject of research.

15 Conclusions

We have reviewed the fractional transformations imple-
mented in paraxial optics and their applications for optical
information processing: phase retrieval, signal/image char-
acterization, optical beam manipulation, pattern recognition
and classification, adaptive filter design, encryption, water-
marking, motion detection, holography etc.. A general algo-
rithm of fractionalization, which allows to construct various
fractional transforms related to a given cyclic transform, has
been discussed. The usefulness of a specific fractional trans-
form is related to its optical feasibility, as well as to its pos-
sible application in signal/image processing. The analysis of
the harmonic contents for various types of fractional trans-
forms offers a procedure for their experimental realization.
It seems, that the fractional sine, cosine, Hartley, and Hankel
transforms, discussed in Sections 13 and 14, due to their sim-
ilarity to the canonical fractional FT, may act as a substitute
for it in many tasks. The usage of the fractional Hilbert trans-
form for selective edge enhancement produces very promis-
ing results. The exploration of other recently proposed frac-
tional transforms is expected in near future.

Beside the theoretical and numerical simulation works
demonstrating an important impact of the optical implemen-
tation of the fractional FT, the experimental realization of the
corresponding devices and techniques takes up a significant
place of research.

We believe that fractional optics significantly increases
the importance of analog optical information processing. The
design of new devices based on fractional optics, will lead to
unified approaches of signal/image processing used in optics
and electrical engineering, which will significantly enrich
the fields of optoelectronics, optical security technology, and
optical computing.
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