Fractional transforms in optical information processing
Tatiana Alievaj Martin J. Bastiaang,and Maria Luisa Calvp

7 Universidad Complutense de Madrid, Facultad de Ciendisisas,
Ciudad Universitaria s/n, Madrid 28040, Spain
Email: talieva@fis.ucm.es, mlcalvo@fis.ucm.es

1 Technische Universiteit Eindhoven, Faculteit Elektrotechniek,
Postbus 513, 5600 MB Eindhoven, Netherlands
Email: m.j.bastiaans@tue.nl

Abstract

In this paper we review the progress achieved in optical information processing during the last decade by applying fractional
linear integral transforms. The fractional Fourier transform and its applications for phase retrieval, beam characterization,
space-variant pattern recognition, adaptive filter design, encryption, watermarking, etc., is discussed in detail.

A general algorithm for the fractionalization of linear cyclic integral transforms is introduced and it is shown that they
can be fractionalized in an infinite number of ways. Basic properties of fractional cyclic transforms are considered. The
implementation of some fractional transforms in optics, such as fractional Hankel, sine, cosine, Hartley, and Hilbert transforms,
is discussed.

New horizons of the application of fractional transforms for optical information processing are underlined.

1 Introduction fully apply the ordinary ones? First, because they naturally
arise under the consideration of different problems, for exam-

During the last decades, optics is playing an increasinglple in optics and quantum mechanics, and secondly, because
important role in computing technology: data storage (CD4ractionalization gives us a new degree of freedom (the frac-
ROM) and data communication (optical fibres). In the areajonal order) which can be used for more complete charac-
of information processing optics also has certain advantagegrization of an object (a signal, in general) or as an addi-
with respect to electronic computing, thanks to its mastional encoding parameter. The canonical fractional FT, for
sive parallelism, operating with continuous data, etc. [1-3linstance, is used for phase retrieval [32—42], signal character-
Moreover, the modern trend from binary logic to fuzzy logic, ization [43-56], space-variant filtering [29, 57—77], encryp-
which is now used in several areas of science and technologybn [78-85], watermarking [86, 87], creation of neural net-
such as control and security systems, robotic vision, indusyorks [88-93], etc., while the fractional Hilbert transform
trial inspection, etc., opens up new perspectives for opticalas found to be very promising for selective edge detec-
information processing. Indeed, typical optical phenomengion [94-96]. Several fractional transforms can be performed
such as diffraction and interference, inherit fuzziness an@y simple optical configurations.
therefore permit an optical implementation of fuzzy logic [4]. In this paper we review the progress achieved in opti-

The first and highly successful configuration for opticalcal information processing during the last decade by appli-
data processing — the optical correlator — was introduced byation of fractional transforms. We will start from the defi-
Van der Lugt more than 30 years ago [5]. It is based on thgition of a fractional transformation in Section 2. Then we
ability of a thin lens to produce the two-dimensional Fourierconsider, in Section 3, the fractionalization in paraxial optics
transform (FT) of an image in its back focal plane. Thisdescribed by the canonical integral transformation. Two frac-
invention led to further creation of a great variety of opti- tional canonical transforms, the Fresnel transform and the
cal and optoelectronic processors such as joint correlatorfactional FT, are commonly used in optical information pro-
adaptive filters, optical differentiators, etc. [6]. More sophis-cessing. The fractional FT, which is a generalization of the
ticated tools such as wavelet transforms [7] and bilinear disordinary FT with an additional parametethat can be inter-
tributions [8-14], which are actively used in digital data pro-preted as a rotational angle in the phase plane, is considered
cessing, have been implemented in optics. in more detail.

Nowadays, fractional transforms play an important role  Since the convolution operation is fundamental in infor-
in information processing [15-31], and the obvious questiofmation processing, there were several proposals to gener-
is: Why do we need fractional transformations if we success-



alize it to the fractional case. In Section 4 we define thea matrix, and the additivity property is then formulated easily
generalized fractional convolution, and in the subsequerds the product of the corresponding matrices.
Sections 5-8, we consider its application for information ~As we have mentioned in the Introduction, some frac-
processing: phase retrieval, signal characterization, filteringional transforms arise under consideration of different prob-
noise reduction, encryption, and watermarking. lems: description of paraxial diffraction in free space and
The second part of the paper will be devoted to the fracin a quadratic refractive index medium, resolution of the
tionalization procedure of other important transforms. Wenon-stationary Sckdinger equation in quantum mechanics,
will restrict ourselves to the consideration of cyclic trans-phase retrieval, etc. Other fractional transforms can be con-
forms, which produce the identity transform when they acstructed for their own sake, even if their direct application
an integer number of timebl. In Sections 9-11, we will may not be obvious yet. In particular, in Section 9 we con-
show that there are different ways for the construction ofider a general algorithm for the fractionalization of a given
a fractional transform for a given cyclic transform. In Sec-linear cyclic integral transform. The application of a partic-
tion 12 we briefly mention the common properties of frac-ular fractional transform for optical information processing
tional cyclic transforms. then depends on its properties and on the possibility of its
The fractional Hankel, Hartley, sine and cosine, andexperimental realization in optics.
Hilbert transforms, which can all be implemented in optics,

will be considered in Section 13. Finally, we discuss the mai . . . . . .
lines of future development of fractional optics in Section 14 Fractionalization in paraX|aI OptICS.

and make some conclusions. the canonical integral transform

. ] Analog optical signal processing systems are often described
2 Fractional transform: a general def- in the framework of paraxial scalar diffraction theory. A typ-
inition ical subset of such a system is displayed in Fig. 1 and con-
tains a thin lens with focal distancg, preceded and fol-
The word ‘fraction’ is nowadays very popular in different lowed by two sections of free space with distanegsand
fields of science. We recall fractional derivatives in math-z,, respectively. Note that the conventional Van der Lugt cor-
ematics, fractal dimension in geometry, fractal noise, fracrelator [5, 6], mentioned in the Introduction, is constructed
tional transformations in signal processing, etc. In generaby a cascade of two such subsets, with each subset forming
‘fractional’ means that some parameter has no longer a intexn FT system#; = zo = f) and with a filter mask inserted

ger value. between them. A monochromatic optical field in a transversal
To define the fractional version of a given linear integral

transform, let us consider the operafof such a transform,

acting on a functiorf (x),

00 Z1 Z2
R )] (u) :/ K(x,u) f(x)dx, D)
—0o0
. f

with K (x, u) the operator kernel. As an example we men- input output
tion the Fourier transformation, for which the kernel reads
K (X, u) = exp(—i 2w ux). The fractional transform operator
is denoted byRP, wherep is the parameter of fractionaliza-

tion:

Figure 1: A typical optical information processing system.

plane &, y) is then described either by a complex field ampli-
o0 tude f (x, y) for the coherent case, or by the two-point corre-
RPLFOO] (W) = /;OO K(p,x,u) T dx. @ lation functionI" (X1, X2; V1, Y2) = < f (X1, y1) F*(X2, y2) >
for the partially coherent case, where the asterisk denotes
We will formulate some desirable properties of this fraCtionalcomp|eX Conjugation and> indicates ensemble averag-
transform first. ing; note that these cases correspond to a deterministic or
The fractional transform has to be continuous for any rea stochastic signal description in signal theory, respectively.
value of the parametep, and additive with respect to this ~ Under the paraxial approximation of scalar diffraction
parameterRP1*P2 = RP2 RPL. Moreover it has to repro- theory, the complex amplitudé (xi,, yin) of a monochro-
duce the ordinary transform and powers of it for integer valmatic coherent optical field at the input plane of the setup
ues of p. In partiCUlar, forp = 1 we should get the ordi- depicted in F|g 1 and the Comp|ex amp“tuﬂﬂ (Xouts yout)
nary transformR* = R, and forp = 0 the identity trans- 4t the output plane of it, are related by the input-output rela-
form R® = |. From the additivity property it follows that
S0 K(p1, X, u) K(p2, u, y)du = K(p1 + p2, X, y). Note
that the parametep, as we will see further, may be given by



tionship [97] e asection of free spacd (— oo,andhenca=d =1
andc = 0), which is also known as a parabolic system
Fm Xouts Youd = RM [ (Xin» ¥in)] (Xouts You?) [97] and which in the paraxial approximation performs
00 oo a Fresnel transformation;
= [ / KMy Xins Xout) Ky (Yins Your) e aFT system®; = z, = f, and henca = d = 0 and
o0 dmeo bc = —1), and more generally, a fractional FT sys-
% f(Xin, Yin) dXin dY¥in,  (3) tem [15-18] &1 = z = 2 sirf(«/2) [22], and hence
a = d = cosa andbc = —sirf«), which is also
known as an elliptic system [97]; the common case for
whichb = —c¢ = sing, follows when we normalize
x/& with respect to. f sine, and can also be achieved
) axXi% + dxxgut — 2XoutXin by formally choosing.f sine = 1;
exp|ir by , bx #0, e a hyperbolic system [97], wita = d = coshx and
bc = sinffa.

where the kerneKw, (Xin, Xour) takes the form

Kmy Xin, Xout) =

1
V/iby
4)
1 2 i i i
exp (in cxxout) 5 (Xin Xout>, by = 0, To treat the propagation of partially coherent light

T a through first-order optical systems, it is advantageous to
describe such light not by its two-point correlation func-
with tion " (X1, X2; Y1, Y2) as mentioned before, but by the related
Wigner distribution (WD) [101, Chapter 12]; of course, the
My = < ax by ) coherent case considered in Eq. (3), is just a special case of
Cx Oy this more general, partially coherent case. The Wigner dis-
1—2/fx Mz + 20 — 2122/ fy) tribution of partially coherent light is defined in terms of the
= < —1/Afy 1—2z1/fy ) ®) two-point correlation function by

ay ay

anda the optical wavelength, and where similar expressions, W(x, £; y, n)

with x replaced byy, hold for the kerneKwm, (Vin, Youy and 00 oo

the matrixMy. Note that the optical wavelengthenters the = / / CX+X/2,x=X/2,y+Y/2,y—Y/2)
expressions fob andc as a mere scaling factor; very often, oo ) , , ,

we like to work with reduced, dimensionless coordinates, in x exp[-i2r(Ex’ +ny)]dx'dy. (7)

which caséb andc take a form that would also be achieved
by assigning an appropriate valueioWe remark that the
application of cylindrical lensesfyx # fy, permits to per-

A distribution function according to definition (7) was first

introduced in optics by Walther [8, 9], who called it the

form anamorphic transformations. generahzed rad_|anC(_e. The WW.(X’ §y.m) repre_sents par-
tially coherent light in a combined space/spatial-frequency

The coefficientsay, by, cx, anddy that arise in the ker- . .
AR X domain, the so-called phase plane, whigrg are the spatial-

nel (4), are entries of the general, symplectic ray transformaf bl iated to th i
tion matrix [98] that relates the positiqi, y) and direction tirsg;ency variables associated 1o the positiong, respec-

(£, ) of an optical ray in the input and the output plane of a The WD is closely related to another bilinear distribution,

so-called first-order optical system, and we have the ambiguity function (AF) [101, Chapter 12], which was
Xout a, by Xin Xin also applied to the description of optical fields [10] and which
( Eout ) - ( Cx  Ox ) ( &in ) = MX< Ein ) (6) s related to the WD by a combined FT/inverse FT. Note
that the introduction of the WD and the AF in optics [8-14]
and a similar relation for the other dimension, witlandé  has allowed to describe — through the same function — both
replaced byy andn, respectively. For separable systems, tocoherent and partially coherent optical fields, and to unify
which we restrict ourselves throughout, symplecticity readsapproaches for optical and digital information processing.
simply axdx — bxcx = 1 andaydy — bycy = 1. The It is well known that the input-output relationship
transform described by Eq. (3) is known by such names alsetween the WD®V, (X, &; Yy, n) andWow(X, &; Y, ) at the
canonical integral transform and generalized Fresnel transaput and the output plane of a separable first-order optical

form [97-100]. system, respectively, reads [12-14]
Special cases of canonical integral transform systems
InC|Ude WOLIt(Xﬂ Ss ya 77) = VVin(dxX - bxga _CXX + anv
e an imaging system (¥; + 1/z, = 1/f, and hence dyy —byn, —cyy +ayn), (8)

ad = 1 andb = 0); which elegant expression can be considered as the counter-
e asimple lensf; = zo = 0, and henca = d = 1 and 9 P

b= 0): part of the canonical integral transform (3) in the phase plane,



valid for partially coherent and completely coherent light. A

similar relation holds for the AF [10]. 1

Every separable, first-order optical system is described
by a set of 2x 2 matricesM, one for each transversal coor-

dinate, whose entries are real-valued and whose determi2,

nants equal 1, and we have the important symmetry property
K (Xin, Xou = Kpy-1(Xout, Xin). The cascade of two such
systems is characterized by the matrix proddgt= M>M1,

which expresses the additivity of first-order optical systems. 3.

We might say that each separate subsystem performs a sep-
arate fraction of the total canonical integral transform that
corresponds to the system as a whole. We may demand that

in distributing the total canonical transform over the separate4-

subsystems, certain rules of the dividing procedure should
hold, for example, that all fractional subsets should be iden-
tical and be defined by the same matrix [102]. It is often pos-
sible to separate the original setup into equal subsets char-

acterized by a one-parameter matrix; this is in particular the 5.

case for one-parameter systems like the parabolic, the elliptic

linearity
RV 32 1 £500] W = 32 1 RM [ £00]
Parseval’'s equality

foo fX)g*x)dx = /OO Fm(u) G}y (u)du
shifting
RM[f(x — %o)] ()

= expli7(2ux, — ax?)c] RM[f (x)] (u — ax,)
scaling
RM [ (w)] () = (@/m)RMe [ £ (0] (u)

WithM;z:(i 3)(16“ 2)

differentiation

" [d”f(x)} w

dxn

n
— ni)" [—cu+ ii] RM [ (] W)

and the hyperbolic system.

It is easy to see from Eq. (4) that two canonical systems
whose parameters are relatecbaga; = by/az, produce the
same transformation of the complex amplitude of the input
field, and differ only in a scaling (determined by/b1) and
an additional quadratic phase shift [51, 103]:

27i du

Table 1: Canonical integral transform: main theorems

tages for application in optical information processing. First,
because this fractional FT can easily be realized experi-
mentally by using simple optical setups [22], and secondly,
because it produces a mere rotation of the two fundamental
phase-space distributions: the WD and the AF.
In this sense the elliptic (fractional FT), parabolic (Fresnel The canonical fractional FT was introduced more than 60
transform), and hyperbolic systems with the sdoye deter- ~ years ago in the mathematical literature [19]; after that, it was
mined by the angle or the propagation distanae behave reinvented for applications in quantum mechanics [20, 21],
similarly. optics [15, 16, 18], and signal processing [23]. After the main
The fractional FT and the Fresnel transform are usuallyproperties of the fractional FT were established, the perspec-
applied in optical information processing due to their simpletives for its implementations in filter design, signal analysis,
analog realizations. Since both of them belong to the class d¢ihase retrieval, watermarking, etc., became clear. Moreover,
canonical integral transforms, we summarize the main thethe use of refractive optics for analog realizations of the frac-
orems for the canonical transform in Table 1. For simplic-tional FT opened a way for fractional Fourier optical infor-
ity, we consider only the one-dimensional case, and we wilmation processing. In this section we will point out the basic
do the same in the rest of the paper if the generalizatiofroperties of the fractional FT and its applications in optics.
to the two-dimensional case is straightforward. The eigen- In the one-dimensional case we define the fractional FT
functions of the linear canonical transform were considere®f a signalf (x) as
in [99,104].

RMLLf (xin)] (X I)—%ex E(db — dbby)
in ou _bl p Zb% 1M1 2002

x RM2[f (xin)] (%xout) )
1

o0

Fo(u) =R*[f(X)] (u) =/ K(a, x,u) f(x)dx, (10)

—00

4 Fractional Fourier transform and

) ] . where the kerneK («, X, u) is given by
generalized fractional convolution

Since the FT plays an important role in data processingK (¢, X, U) =
its generalization — the fractional FT — was probably the

most intensively studied among all fractional transforms . . .
y 9 Here we use reduced, dimensionless variaklaadu. Note

Although the FT can be divided into fractions in differ- . . o . ; .
. . . the slight change in notation in comparison to Section 2; it
ent ways, the canonical fractional FT certainly has advan-

sina

explia/2) .
N exp [| 7

(X2 4 u?) cosa — 2ux:|

(11)



will soon be clear that in the case of the fractional FT wecf. Eq. (14), or equivalently by
prefer to use the fractional angle= p (/2).

The fractional FT can be considered as a generalization R*~7/2 [Hig(X, o, B, ¥)] (W)
of the ordinary FT for the parameter which may be inter- )
preted as a rotation angle in the phase plane [22]. This can = / Fg—n/2(U) Gy _n2(u—u)du, (16)
easily be seen by considering the WD (or the AF) and by not- o
ing that a fractional FT system is a special case of a first-ordeif. Eq. (13).
optical system witta = d = cose andb = —c = sina. If It is easy to see that the GFC includes as particular cases
fou(U) = R* [ fin(X)] (u) is the fractional FT offin(X), then  aimost all definitions of the fractional convolution and corre-
the WDWin(X, &) of fin(x) and the WDWoui(u, v) of fou(U)  |ation operations proposed before [57-70]. Also the expres-
are related a8Vin(X, §) = Wou(U, v), see Eq. (8), wherg  sjons for the cross-WD and cross-AF can easily be given in
andé are related ta andv by the rotation operation terms of the GFC; for the cross-WD and cross-AF expressed

in polar coordinates [34],

(4)=( S ) () o
Wr g(r, ¢)
A detailed analysis of the fractional FT can be found o0 .
in [24, 25, 29-31]. From its properties we mention that for — 2/200 Fo-+r/2(U) Gy jp(—W) expliZzu(2r]du,  (17)
a = +m /2, we have the normal FT and its inverse [and also
Foir () = Fy(—w)], while for« — 0 we have the iden-

tity transformation:Fo(x) = f(x). Note also the symme- At g(r. ¢)
try propertiesK («, X, u) = K(a, u, X) and K*(a, X, u) = /oo

K (—a, u, x), and the reversion propertg[ f (—x)](u) = = Fotr/2(U) Gy o p(U) expi2rur)du, (18)
R*[ f (x)](—u). The analysis and synthesis of eigenfunc-
tions of the fractional FT for a given angle were discusse@ye thus have
in [105-109].

Besides the optical realization of a fractional FT sys- Wy g(r,¢) = 2H¢g:(2r, /2, ¢ + /2, —¢ + 7/2), (19)
tem mentioned before in Section 3, other optical schemes — N b —
have been proposed [22, 110-113]. In particular, the com-Af’g(r’@ g (/2.9 + /2 =¢ =7/, (20)
plex amplitudes at two spherical surfaces of given curvarespectively. The GFC system is represented schematically
ture and spacing are related by a fractional FT, where thi Fig. 2, indicating a general procedure to obtain the GFC.
angle is proportional to the Gouy phase shift between the two

—00

surfaces [110-112]. This relationship can be helpful for the f RP

analysis of quasi-confocal resonators and data transmission Y H

between a spherical emitter and receiver. %9 R f.g
In the sequel, optical systems performing a fractional FT 9 R

will be called fractional FT systems. As we have mentioned
before, the use of cylindrical refractive index media allows to
perform a separable, two-dimensional fractional FT for dif-Figure 2: Schematic representation of the generalized frac-

ferent angles in the two dimensions [114, 115]. tional convolution system.
One of the most important properties of the FT is related
to the convolution operation on two signdigx) andg(x), In view of the canonical integral transform, a
~ further generalization of the convolution operation
hfg(x) = / f(x') g(x — x')dx, (13)  Hf.g(x, M1, M2, Mg) can be proposed as [69]
—00

RML[H¢ g(x, M1, M2, M3)]
= {RM 11001} {RM 9001} (22)

which in the spectral domain takes the form

R™2[h1g00] = {R72[F 001} {R72[g001} . (14)

] ] ) ] where the kernels of the three canonical integral transforms
After the introduction of the fractional FT, several kinds ¢ parameterized by a matr, see Eq. (6). This defini-

of fractional convolution and correlation operations Werejon corresponds to the nonconventional convolution that is
proposed [57-70]. These operations can be expressed |ieq in real optical systems under the paraxial approximation
the form of a generalized fractional convolution (GFC) ot the scalar diffraction theory, where the image and filter
Htg(X, o, B, y), defined by [66] planes are shifted from their conventional positions [68, 71].
As particular cases, the GFC and the Fresnel convolution can
R [Hegx a, B, )] = [RE[f 01} {R” [90]}, (15)



thus be realized. The introduction of the canonical convothe angular derivative of the fractional power spectrum and
lution operation permits to find features similar to the oneghe signum function [33],

of the fractional Fourier correlators and the Fresnel corre-

lator, proposed several years ago in [71], and to treat eas- Ef,(X)

ily the fractional correlator based on the modified fractional 00

FT [68]. / & Wi (xcosp — & sing, xsinB + & cosp) dé
Note that the GFC of a one-dimensional signal is a func- = ~—>

tion of four variablesx, «, 8, andy. The angle variables / Wi (X cosp — £ sinB, xsinp + & cosB) dé

are often considered as parameters, and the function becomes —00

one-dimensional. As we will see below in Sections 5 and 6, 1 % 3 |Fy (x’)|2 L

optical signal processing allows to treat the GFC as a two- = —2/ - sgn(x — x) dx’,

2|Fg00)" S O]

dimensional function, where one of the parameters is con-

sidered as the second coordinate. The choice of the parame- (23)
ters.and the ngmb_er of variables of the GFC depends on thv(\?here sgix) = £1 for x = 0. Moreover, since the instanta-

partu;ular apphcayon: In the following Sections 5'8’. we W'I.l neous frequency is the phase derivative of the fractional FT

consider the applications of the GFC for phase retrieval, Sig¢ 4 signal

nal characterization, pattern recognition, and filtering tasks, ' 27 B, (X) = deg () /dX (24)

respectively. e P
wheregg(x) = argFg(x), the complex field amplitude up to

. a constant phase factor can be reconstructed from only two

5 Fractional power spectra for phase ciose fractional power spectra [33-35]. This method has been

retrieval demonstrated on different examples of multicomponent and

noisy signals and exhibits high quality of phase reconstruc-

Phase retrieval from intensity information is an importanttion [35]. Note that a similar method of phase retrieval can
problem in many areas of science, including optics, quanP€ applied for any one-parameter canonical transform [36].
tum mechanics, X-ray radiation, etc. In particular non-Thus, in the case of the Fresnel transform we can mention a
interferometric techniques have attracted considerable atteROn-iterative approach for phase retrieval in free space, based
tion recently. In this section we consider the application ofPn the so-called transport-of-intensity equation in optics,
fractional FT systems for the phase retrieval problem. proposed by Teague [37] and then further developed by oth-
The squared moduli of the fractional FT, also called frac-£'S- _
tional power spectra, correspond to the projection of the WD N the case that two fractional power spectra are known
upon the direction at an angiein the phase plane. Note also for angles which are not close to each other, iterative meth-

that the fractional power spectrum is the particular case ods of phase retrieval can be applied [38-40]. These methods
the GEC are a generalization of the iterative Gerchberg-Saxton algo-

IF, (U)|2 = Ht (U, 0, or, —ar). (22) rithm, .desi.gm.ad fpr the recovery of a complex signal from its
intensity distribution and power spectra.

Fractional power spectra play an important role in frac-  Another method for phase retrieval is based on a sig-
tional optics: they are related to the intensity distributionsyg| decomposition as a series of orthogonal Hermite-Gauss
at the output plane of a fractional FT system and thereforgyodes [41]. It has been shown that if a coherent optical sig-
can be easily measured in optics. The set of fractional powg{| contains only a finite number of Hermite-Gauss modes
spectra fore € [0, 7] is called the Radon-Wigner trans- N then it can be reconstructed from the knowledge of Ns 2
form [116], because it defines the Radon transform of theactional power spectra — associated with the intensity dis-
WD. The WD can be obtained from the Radon-Wigner transyihytion in a fractional FT system — at only two transversal
form by applying the inverse Radon transform [101, Chaptepoints. Note that this method can be generalized to the case of
8]. This is a basis for phase-space tomography [32], a methqgther fractional optical systems to be discussed below, such
for experimental determination of the complex field ampli- 55 for example the fractional Hankel one.
tude in the coherent case or the two-point correlation func- A further method for phase retrieval is based on filtering
tion for partially coherent fields, from the measurements o the optical field in fractional Fourier domains [42]. Indeed,
only intensity distributions. Application of cylindrical lenses e phase derivativéy /dx, and therefore the phagex) up
allows the reconstruction of two-dimensional optical fields. g 5 constant term, can be reconstructed from the knowledge

In the case of coherent optical signals, other methodgt the intensity|  (x)|2 and the intensity distributions at the
for phase retrieval based on the measurements of fractiongl;tput of two fractional FT filters with mask

power spectra have been proposed. One of them is related to

the estimation of the instantaneous spatial frequeBcy) de(x) |R—a [Fe (u) U] (x)|2 — |Ra [F_(,,(u) u] (x)|2
from two close fractional power spectra. It was shown that dx T X | T ()2 sin 2 .
the instantaneous frequency is related to the convolution of (25)




The efficiency of this approach has been demonstrated tgnd for the intensity moments in particular we have

numerical simulations. A simple optical configuration for the
experimental realization of the method was discussed in [42]. out P T D r o
180 = Z Z <k> <m> (cosa) P~ (sinw)
k=0 m=0

6 Fractional power spectra for optical x (CosB) "™ (SINA™ 1 11 mm. (30)

beam characterization From Eg. (30) a set of fractional FT systems can be found

Since the AF, the WD, and other bilinear distributions of two-for which the input moments can be derived from knowledge
dimensional optical signals are functions of four variablesOf the intensity moments in the output, i.e. from fractional
their direct application for the analysis and characterizatiof?®Wer spectra for selected angkesand . It was demon-
is limited. Mostly the moments of these distributions are use§trated [43] that in order to find afi-th order moments —
for beam characterization. The normalized momengg,s ~ 2nd We havein + 1)(n + 2)(n + 3)/6 of such moments —

of the WD are defined by we needN fractional power spectra, whel = (n + 2)2/4
for evenn andN = (n + 1)(n + 3)/4 for oddn. Moreover

00 (0O pOO OO N — (n+ 1) spectra have to be anamorphic, i.e., spectra with

Mpqrs E = /OO / o / o / o W(X, &y, m) non-equal fractional order for the two transversal coordinates

(¢ # B). In particular, we need 2 fractional spectra to find
the 4 first-order moments, 4 fractional spectra (one of which
has to be anamorphic) to find the 10 second-order moments,
6 fractional spectra (with 2 anamorphic ones) to find the 20
third-order moments, etc.

Regarding the evolution of the second-order moments in

x xPgdy n®dxdsdydy (p,q,r,s>0), (26)

where the normalization is with respect to the total endtgy
of the signal (and heng&ypoo = 1). Note that in a first-order
optical system, with a symplectic ray transformation matrix,

the total energ\E is invariant. The low-order moments rep-

resent the global features of the optical signal such as totd) fractlonaI_FT system, we can find the. fractional d‘.’”.‘a'”
energy, width, principal axes, etc. Thus the second-ordeyhere the signal has the best concentration or where it is the
momer;ts of th,e WOp-+q+r +é — 2) are used as a basis of most V\(idely spread, by calculating the zeros of the angular
an International Organization for Standardization standard O(il_envatlves of the central momenigoro (@, A). This analy-

beam quality. The combination of the second-order momenty> [33, 34] is helpful, for example, in search for an appro-

(111001 — po110) E, for instance, describes the orbital angu_priate fractional domain to perform filtering operations [45].
: ' moothing interferograms in the optimal fractional domain

lar momentum of the optical beam, which is actively use . o .
for the description of vortex beams [117]. The moments o eads to a weighted WD with significantly reduced interfer-
ence terms of multicomponent signals, while the auto terms

higher order are related to finer details of the optical signal. . .
g b v remain almost the same as in the WD. In general, based on

Note that forg = s = 0 and forp = r = 0 we have . _ . . L2
the position and frequency moments, which can easily bg'ns approach optimal signal-adaptive distributions can be
' nstructed with low cost [46].

obtained from measurements of the intensities in the signaﬁO X
The way to determine the moments from measurements

and the Fourier domain, respectively: of intensity distributions as described by Eq. (30), has been
o0 oo B 9 generalized to the case of arbitrary separable first-order opti-
Mmporo B = / / XUy [Fo(x, )| dxdy,  (27) ¢l systems [44]. Using an equation similar to Eq. (29) one
oo can easily determine the evolution of these moments during
mogos E = / / £90° |Frj2(8, r;)|2 dédn. (28) propagation of the beam in any first-order optical system;
Toodmo in particular this was applied to the analysis of optical vor-
Since in optics only intensity distributions can be measuredices [47].
directly, it was proposed in [43] to apply fractional FT sys-  In signal processing, the fractional FT spectra were pri-
tems in order to calculate other moments from the intensitynarily developed for detection and classification of multi-
moments. It was shown that the moments at the output plar@mponent linear FM in noise [48, 49].
of a separable fractional FT system, with fractional angles |t was shown [50-56] that the fractional FT spectra as

and g in the x- and they-direction, respectively, are related Well as the Fresnel spectra are also useful for the analysis of
to the input ones as fractal signals. Thus the hierarchical structure of the fractal

fields and its main characteristics such as fractal dimension,
o P a4 r s 0 q . S Hurgt exponent, scaling pgrameters, frqctal level, etc., can be
KoM= .Y Y > ( k) < I ) (m) (n) obtained from the analysis of the fractional spectra for the
k=0 1=0 m=0n=0 angular region from 0 tar/2 [50-53]. Since in this region
x (—1)'*" (cosa)P~K+a! (sina)k*! (cosp)f ~MHsN the fractional FT spectra and the Fresnel transform spectra
o men i differ only by a scaling parameter, the Fresnel diffraction is
X (SINB)™T Wp ks g-1+kr—m+ns—n+m (29)  applied for this task [51, 52, 55]. Recently the experimental



fractal tree of triadic Cantor bars has been constructed frorthe tolerance to a shift variance of the correlation operation.
the observation of the evolution of diffraction patterns in freeA shift of the signal leads to a shift and a modulation of the
space [54]. The general properties of the Fresnel diffractioeross-AF:

by structures constructed through the multiplicative iterative .
procedure have been studied in [56]. Aty-9.00 % &) = Ary).giy) (X=S, §) exp(—imst) (33)

Then the form of the AF radial slices of a shifted signal is
changing except for the angle corresponding to the ordinary

7 Generalized fractional convolution o elation (see Fig. 3)

for pattern recognition
&
A great part of the proposed applications of the GFC is
related to pattern recognition tasks [57, 60, 66—74]. It was
shown [66, 67] that for this purpose the following relation e d
between the angular parameters has to hold /] 1\ Bz

cota = cotp + coty. (31)

Then the amplitude of the GFC is expressed in the form [66],

|Hf’g* (X7 a, /37 y)|

o sing [ siny .
=C / f siny Xsing Y/ |9 8% Figure 3: Schematic representation of the cross-AF of two
—00 Y \ Sina . - : .
cota (1+ coty cotB) signals, before (solid line) and after (dashed line) shifting of
x exp|imry? Y one of the signals.
1+ cot2p
. sin28 d 32 Therefore fractional correlations are shift variant fog
—IryX sina siny y. (82) /2 4+ nx. Thus if in the conventional correlator a shift of

the object results in a shift with opposite sign of the cor-
where C is a constant for fixede, B, and y. The relation peak at the output plane, the shape of the peak is
quadratic phase factor under the integral vanishes — whichiso changed in the fractional correlator. This effect increases
brings the integral in the form of a windowed FT — if with decreasing parametgifrom /2 down to 0. For larg
cota (1 + coty cotp) = 0. In the case cat = O (and  the fractional correlator is almost shift invariant, whereas for
hencea = 7/2 andy = —p) which is usually con- small8 it becomes strongly shift variant. Note that there are
sidered,H+ g (1, 7/2, B, —B) corresponds to radial slices gpplications, such as cryptography or image coding, where
At,g(r, B — m/2) of the cross-AF of the signal$(x) and  the location of the object can be as important as its form. In

g(x), cf. Eq. (20). these cases fractional correlators with fractional paranggter
If the position and the size of the object is known, thenthey < g8 < /2, must be used.
correlation operatiorH ¢ g« (X, «, 8, —B) for pattern recog- The shift tolerance condition is usually written in the

nition can be performed in any fractional domgnsince  form [29, 59, 60]rso cotp < 1, wheres is the signal shift
the auto-AF has a maximum at the coordinate origia 0.  and o the signal width. More precisely the shift variance

Nevertheless, in spite of the fact that the magnitude of thglepends on the fractional order, the signal size, and also the
correlation maximum is the same in any fractional domainform of the AF.

the forms of the correlation peaks are different. It was shown The tasks of pattern detection and recognition in optics
[70] on the example of a rectangular function that the narare mostly related to two-dimensional signals (images). It is
rowest correlation peak is observed in the fractional domairiso possible to choose different fractional orders for the two
with fractional angle = 0. Note also that the object is orthogonal coordinates and thus to better control the shift
usually corrupted by noise, or is blurred. The characterisyariance. In order to recognize a letter on a certain line of the
tics of the noise (except white noise) in different fraCtiOﬂahext, for examp|e’ ohe can choose the param@teﬁ 71—/2
domains depend on the fractional angle [75]. The fractionahnd g, < /2 while the filter corresponds to the inverse
correlation offers the flexibility to choose the domain wherefractional ET with parametersy, By of a letter situated on a
the effect of noise on the correlation operation is minimizedgiven line. The exciting results demonstrating the efficiency
Moreover, for the recognition of complex or highly degradedof shift-variant pattern recognition in the fractional domain,
objects, several fractional correlation operations for differentan be found in [72-74].

angles can be performed in order to make the right decision.  The fractional correlation operation can be performed in

On the other hand, if the position of the object isoptics by a fractional Van der Lugt correlator [72—74] or by
unknown, the choice of the fractional domain is related t0a nonconventional joint transform correlator [118]



In order to maximize the Horner efficiency of the correla-transform map and then easily removed by a notch filter,
tion operation, phase-only filters are often used. It was showwhich minimizes the signal information loss.
in [76] that in general the phase of the fractional FT for  Several applications of fractional FT filtering systems for
a # nx contains more information about the signal/imageindustrial devices have been proposed recently.
than the amplitude. Therefore the phase-only filters can also Chirp detection, localization, and estimation via the frac-
be applied in the fractional Fourier domain. The developmentional FT formalism are applied now in different areas of
of liquid crystal spatial light modulators allows their rela- science. Appropriate filtering in fractional domains, which
tively simple implementation in optics. allows to extract linear chirps out of a multicomponent and

Another particular case of GFC which can be applied fomoisy signal, is used to analyze the propagation of acoustic
recognition tasks, is related to the fractional FT of the ordi-waves in a dispersive medium [119]. In particular, the non-
nary correlation operation [23} 7 ¢« (X, o, m/2, —7/2). We  linear effects due to the Helmholtz resonators are considered.
believe that this type of operation can be useful for angles A new spatial filtering technique for partially coherent
at the region neatt /2 in order to improve the performance light in the fractional Fourier domain [120] was proposed
of the conventional correlation operation. Thus it was showrio improve image contrast and depth of focus in projection
[77] that fora slightly different fromzn /2, the performance photo lithography. Unlike the currently applied pupil method
of the joint-transform correlator improves and higher correla-of filtering in the Fourier domain, the fractional filter can be
tion peaks are observed. Efficient use of the light source anglaced at any location along the projection optical path other
a larger joint transform spectrum were achieved. Moreovethan the pupil plane. On the examples of designed phase fil-
for these anglea the correlator still remains shift invariant. ters for contact hole and line-space patterns, it was demon-
Nevertheless using anglesfar from /2, leads to confus- strated that the fractional FT filtering technique can signif-
ing results for interpreting the correlation peaks. Indeed, ifcantly improve image fidelity, reduce the optical proximity
the conventional correlation operation does not produce cleaffect, and increase the depth of focus.
local maximum and is almost constant, then a sharp peak Optical technologies play an increasing role in securing
in fractional correlationH¢ g+ (X, ~ 0,7/2, —m/2) can information [121]. Also the GFC found its way into security
appeatr. protection: encryption and watermarking techniques origi-

nally proposed for the Fourier domain, were generalized to

. . . the fractional domain.
8 Generalized fractional convolution Optical image encryption by random phase filtering in

for filtering and data protection the fractional Fourier domain was proposed in [78,79]. It can
be described by the GF8 ¢ 4(X, «, B, ), where the phase

Let us consider now the filtering operation in the fractionalmask Gg and the parameters and g are the encryption
domain. The parameters of the GFC in this case depend®des. This procedure was further generalized by applica-
on the particular application of filtering. If the filter is used tion of the cascaded fractional FT with random phase filter-
for improvement of image quality or for manipulation of ing [80]. In order to encode the image, the fractional trans-
the imagef in order to extract its features (for example formis performed and random phase is introduced by means
for edge detection or image deblurring), then we have t®f a spatial light modulator. After repeating this procedure
chooseg = «, in order to represent the result of filtering Several times, the encrypted image is obtained. In order to
in the position domain. Since we are free to assign an arbAecode it, not only the information about the used random
trary fractional domain for the filter functiog, we can as Phase masks has to be known, but also the parameters and
well puty = «. Thus the complete operation leads to thethe types of the fractional transforms. It was demonstrated

Htg(X, @, @, a). The useful properties of this type of GFC, that it is impossible to reconstruct the image using the correct
masks but the wrong fractional orders. Without increasing

RE [HigX, o, 0, )] (u) = HE,.65 (U =B, a— B, a—f), the complexity of the hardware, the fractional Fourier opti-
cal image encryption system has additional keys provided by
Hfg(X,a,0, ) = He g(X, ¢ + 71, 00 + 77, ¢ + 71), the fractional order of the fractional convolution operation.
Due to the double domain properties of the fractional FT the
algorithm demonstrates the robustness to the blind deconvo-
lution.
Recently, some modifications of the optical encryption

were proved in [62]. Moreover this type of convolution oper-
ation is associative for a fixed parameter

The GFCH¢ 4(X, @, a, ) has been found very powerful
for noise reduction, if the noise is separable from the signal or ; . . .
very well concentrated in some fractional domain [57]. It wa rocedures in the fractional Fourier domain were proposed.

shown that in particular for chirp-like noise, the performance hlus Ilr'] [?ﬂc thi“. corlnit;?atlon of a|!|gdsa\_1_vhtrqnsformt anbd
of filtering in a fractional domain is more relevant [24, 29]. a localized lractiona were applied. 1he image 1o be

Since the fractional FT of a chirp becomes proportional to aencrypted is divided into independent non-overlapping seg-

Dirac-delta function in an appropriate fractional domain, itmems' and each segment is e_nc_rypteo_l using different frac-
can be detected as a local maximum on the Radon-Wigné'ronal parameters and two statistically independent random



phase codes. The random phase codes, the set of fractiomabkpectively. We will restrict ourselves to the consideration
orders, and the jigsaw transform index, are the keys to thef cyclic transforms. There is a long list of linear transforms,
encrypted data. The encryption by juxtaposition of sectionsctively used in optics and signal/image processing, which
of the image in fractional Fourier domains without randombelong to this class of cyclic transforms. ThusHfis an
phase screen keys, was proposed in [82]. operator of a linear integral transform, see Eq. (1), this trans-
Another encryption technique discussed in [83], is basefborm is a cyclic one, if it produces the identity transform
on a method of phase retrieval using the fractional FTwhen it acts an integer number of timis
The encrypted image consists of two intensity distributions,
obtained in the output of two fractional FT systems of dif- RNLF0] () = f(u). (34)
ferent fractional orders, where the input of each system is , . i
formed by the 2-D complex signal multiplied by a randomFQr example, the Fourier and Hilbert transforms are cyclic
phase mask. The two statistically independent random pha¥dth @ periodN = 4, and the Hankel and Hartley transforms
masks and the fractional orders form the encryption key@ve & periodN = 2. Cyclic canonical transforms of period

Decryption is based on the correlation property of the fracN With kerelK (x, u) = Km (x, u), cf. Eq. (4),

tional FT, which allows to recover the signal recursively. ) 5
The implementation of a fully phase encryption system, K (x, u) = 1 exp|in ax®+du” — 2ux . (35)
using a fractional FT to encrypt and decrypt a 2-D phase Vib b

image obtained from an amplitude image, was reported in .

[84]. A comparative analysis of the encryption techniquesvherea + d = 2cos2zm/N) andm and N are integers,

based on the implementation of the fractional FT has beeWere mentioned in [124]. _

done in [85]. All cyclic transforms have some common properties. In
Watermarking is another widely applied data protec_particular, the eigenva!ues of cyclic transf(_)rms can be rep-

tion operation. A watermarking technique in the fractionalesented asA = expi2rL/N), whereL is an integer.

domain was proposed in [86, 87]. In this case, the GFdndeed, Ietd)(x) be an eigenfunction oR with eigenvalue

Hr.g(X, @, a, @) is commonly used. In order to include the A = |Al explig); from Eq. (34) one gets that™ = 1, and

watermark, thex-fractional FT of the image is performed. hencelA| = 1andy = 2z L/N.

The signature has to be such a function which is spread in In Section 2 we have formulated the requirements for the

the image domain and well localized in the fractional domairfractional R-transformR P, wherep is the parameter of the

«. Usually the chirp signal which becomes-dunction in a fractionalization: continuity oR P for any real valuep; addi-

certain fractional domain and spread in the image domain idvity of RP with respect to the parameter reproducibility

used. Introducing the watermark and performing the invers€f the ordinary transform for integer values pf R* = R

fractional FT finally we obtain the protected image. Usually2hdR® = 1. In the case of cyclic transforms we obviously

several watermarks in the different fractional FT domains aréemand thaR™ = 1.

introduced. Only the owner of the image, who knows the all ~ Let us analyze the structure of the kerkelp, x, u) of a

fractional domains will be able to remove them. This water-fractionalR-transform with periodN. Due to its periodicity

marking technique is robust to translation, rotation, croppingVith respect to the parametpr one can represeft(p, x, u)

and filtering [86, 87]. in the form

K(p.x,u)= Y kn(x,u) expi2rpn/N),  (36)

N=—00

9 General algorithm for the fraction-
alization of CyCIIC transforms where the coefficientk,(x, u) have to satisfy the system of

We have considered the properties and application of thy equations [27]

fractional FT. Now the following key questions arise : 00
Kd,x,u) = Z kn(X, u) expi2zin/N)  (37)

e Is this fractional FT unique? Or is it possible to gener- =

ate other fractional FTs?
e How can we generate the fractional version of othemwith| = 0, ..., N — 1. From the additivity property for the
transformations, for example Hilbert, sine, cosine?  fractional transform it follows that the coefficients have to be
e Do fractional transforms have some common propererthonormal to each other [27, 28],
ties?

o0
In order to answer these questions, we will consider the pro- /_oo kn(X, W) km(u, y) du = n.m kn(X, ), (38)
cedure of fractionalization of a given transform [27,28]. Sim-
ilar approaches for fractionalization of the integral transformwheres, m denotes the Kronecker delta.
and the FT in particular, were reported in [122] and [123],
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Note that all coefficient&nmn(X, u) for fixedn and an  This equation provides a formula for recovering the con-
arbitrary integem, have the same exponent factor in the systinuous periodic functionK (p, x, u) from its N sam-
tem of Egs. (37). Therefore we can rewrite Eq. (37) as ples K(l, x, u), under the assumption that the spectrum of

K(p, X, u) contains onlyN harmonics at the frequencies

N—-1 00
. {po, 1+ ¢1,....n+¢n,....N—1+¢n_1].
Kd.x,u)= Y expi2zin/N) > knemn(x,u). (39) If we putgn = 0 (n = 0,1,..., N — 1), we obtain the

n=0 m=-00 fractional transform with the kernel
If we introduce the new variableS,(x, u), which are the g N-1
partial sums of the coefficients in the Fourier expansions (36) K(p, x, u) = — Z explin(N —1)(p—1)/N]
and (37), N 1=0

i —1
o0 X .Sln[n(—p)]K(LX’ u) (44)
Cal, U) = > Kngymn(X, W), (40) sinfz(p —1)/N]
m=—o0 proposed by Shih in [125]. In particular, this formula is used

as the definition of a kind of fractional FT (for the continuous
as well as the discrete case) [125, 126].
With N an odd integer and choosing nonzero coeffi-
1 N1 cients in the decomposition (36) with indicgs= —(N —
Cn(X,U) = — Z exp(—i2zin/NYK (1, x,u).  (41) D/2.....0,....(N — 1)/2 [corresponding to the indices
N =5 n+mNform=0andn=0,1,...,(N—1)/2,andm = —1
andn= (N —-1)/2+1,..., N — 1], we obtain the kernel

Eqg. (39) reduces to a system Nf linear equations withN
variables. This system has a unique solution [27]

It is easy to see that the variablgg satisfy a condition sim- No1 .
ilar to Eq. (38): 1 Z sinfz(p — 1]

PN & sinfe(p /NI

N
o0
[oo Cn(X, W) Cm(U, y) du = dnm Cn(X, y). (42) " This equation corresponds to the recovering procedure of a
band-limited periodic function from its values on equidistant

Note that some partial sums for certain transforms may beampling points [127]. In particular, i (I, x, u) is real for
equal to zero. As we will see further on, this is the case fointegerl =0, 1, ..., N — 1, then the kernel of the fractional
the Hilbert transform, for instance. transform determined by Eq. (45) is real, too. It also means

So, if we find the coefficient&n(x, u) that satisfy the that the Fourier spectrum d€ (p, X, u) with respect to the
condition (38) and whose partial sums are given by Eq. (41)parametep is symmetricik;| = [k_j|.
we can construct the fractional transform. In general, there As an example, let us consider the general expres-
are a number of se{&n(x, u)} that generate fractional trans- sion (43) for the kernel of the fraction®-transform with

K(d,x,u). (45)

forms of a giveriR-transform. period 4 (which is the case for the Fourier and Hilbert trans-
forms):
3
10 N-periodic fractional transform K(p, X, u) = % > Kd, %, uy S (46)
kernels with N harmonics , =0
Let us first construct the fractional transform kernel with ~ With S() = " exp(—inlx/2) expli (N + ¢n) p/2].
harmonics, whereN is the period of the cyclic transform. n=0

Note that for the Hilbert transform, the number of har-
monics reduces to two, becau€g(x,u) = Cyr(x,u) =
0, which follows from K(0,x,u) = —K(2, x,u) and
K(,x,u) = —K(3, x,u), From Eqg. (43) we then conclude
6} at the fractional Hilbert transform kernel can be written as

Then every sunCh(x,u) (n € [0, N — 1]) contains only
one elemenkn,, (X, u) = Cn(x, u) from the decomposi-
tion (36), whereg, = mN andm is an arbitrary integer.
Therefore, in the general case, the kernel of the fraction
R-transform withN harmonics can be written as

K(p, X, u) = exp[i (my + mz + 1) pr]

N—1
K(p. X, W) = Y Kngn (X, U) €Xpi27p(n + ¢n)/N] x {K (0, x, u) cosfms —my +1/2) pr]
n—0 —K (1, x,u) sin[(mz —my + 1/2)pr]}, (47)
N—1 N—1 . .
1 i wherem; and m3 are integers. In particular, for the case
=N lZ K. x.u) ) exp-i2rin/N) my = mz =0 (ky = 0if n # 1, 3), one gets
=0 n=0

x expli2rp(n + ¢n)/N].  (43) K(p, X, u) = exp(ipm)
x [K (O, x,u) cogpr/2) — K(1, x,u) sin(pr/2)], (48)
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while for the casan; = 0 andmgz = —1 (k, = 0if n # casely, = —nandl, =0,
—1, 1), the common form for the fractional Hilbert transform

[94] with a real kernel is obtained: ac , .
Ke(p, X, u) = Y ®n(x) exp(—inpm/2) @j(u)

K(p, X, u) = K (0, x, u) cogprr/2) n=0
+ K@ xusin(pr/2). (49) - SRpT/d (x* + u?) cog pr/2) — 2ux
1sin(pr/2) sin(pr/2) ’
Therefore, even for the same number of harmonics, there are (53)

several ways for the fractionalization of cyclic transforms.
cf. Eq. (11). The fractional Hankel transform, defined by
. Eq. (51) forL, = —n andl, = 0 and ®,(x) being the
11 Fractional transform kernels con- normalized Laguerre-Gauss functions, describes the prop-

struction using eigenfunctions of @agation of rotationally symmetric optical beams through a
medium with a quadratic refractive index [128,129]. The ker-

CyC"C transforms nels of these transforms contain an infinite number of har-

monics.
In the case there exist the set of orthonormal eigenfunctions | ot s rewrite Eq. (51) in the form

of the cyclic transform one can construct fractional kernels

with a number of harmonics! > N, whereN is the period o _
of the cyclic transform [27, 28]. K(p.x,u)= Y z(x,u) expi2rnp/N).  (54)
Suppose that there is a complete set of orthonormal n=-00

eigenfunctions{®n} of the operatorR with eigenvalues Herezn(x, u) is a sum of the elements; (x) ®* (u) over j,

{An =expi2rLn/N)}, n = 0,1, ... (see Section 9). Then where @ (x) is the eigenfunction of th&-transform with
we can represent a kernel of tietransform of the integer eigenvalue expp2rn/N). Thus for the case of the canonical

powerq as fractional FT,
K(@.x,u) =Y ®n(x) A &h(U) KE(p, X, U) =) ®n(X) exp(—inpm/2) &4 (u)
n=0 n=0
0 0
— Zd)n(x) exp(i2rqLn/N) ®(u). (50) = Y zn(x,u) expinpr/2), (55)
n=0

n=—00
One of the possible series of kernels for the fractioRal e coefficientsz, (x, u) vanish for positiven andz, (x, u) =
transform can then be written in the form ®n(x) D% (u) for n < 0. As we will see below, the fractional
) Hartley transform [27] can be represented in the form
K(p, X, u) =Y @n(x) expli2r(Ln/N + 1) p] D5 (W),
n=0

Z exp(—i TNP)Z_n(X, U)

wherel, is an integer and indicates the location of the har- n=0
monics. This kernel satisfies the additivity condition due to Za0GU) = Don(X) Ban(U) + Pons1(X) Ponsa(U).

the orthonormality of the eigenfunctiods, (x). (56)
Note that not all cyclic operators have a complete set of is easy to see from Eq. (54) that we can generate

orthonormal eigenfunctions, as it is the case, for exampleanother kernel series withl harmonics,

for the Hilbert operator, whose eigenfunctichgx) are self-

orthogonal. Nevertheless, the majority of cyclic transforms M-1 o0

of interest in optics, such as Fourier, Hartley, Hankel, etc., K(p.x.u)= Y expii2znp/M) > Zpymm(X. u).

have this set. For the Fourier and Hartley transfordng(x) n=0 Mm=—00

are the Hermite-Gauss modes [15, 16] (57)

which satisfy the requirements for the fractional transforms.

Pp(x) = 214 (Znn!)—l/z Hn(x+/27) exp(—nx?), (52) Here the sums of the elemems(x, u)
where Hp(x) are the Hermite polynomials; for the Hankel
transform of different ordersg,(x) are the normalized
Laguerre-Gauss functions [128, 129].

The canonical fractional FT kernel, discussed in the preare used as the coefficiedg(x, u) in Eq. (36). Note that the
vious sections, can be obtained from Eg. (51) as a particulaelationship (38) holds for the coefficientg(M, x, u) and

kn(M, X, ) = > Znymm(X, U) (58)

m=—o0

12



km(M, X, u), because they are constructed from the disjoinEigenfunctions of fractional transforms
series of orthonormal elements.

One can prove that the kernel (57) fpr= 1 reduces to
(50). In particular, if ®,} is the Hermite-Gauss mode set and
Z_n(X,u) = n(X)Pj(u) forn =0, 1,... andz_np(X, u) =
0 for negativen, then Eq. (57) corresponds to the series o
the M-harmonic fractional FTs proposed in [130],

By analogy with the analysis of the fractional FT eigenfunc-
tions, made in [106, 107], the eigenfunctidm m(x) for
the fractional transfornRP for p = 1/M with eigenvalue
A= exp(i2rL/M), can be constructed from the arbitrary
generator functiomg(u) by the following procedure:

M-1

M—1 WM (X) = 1 > exp—i2znl/M) RYM [g(w)] ().
K(p,x,u) =Y exp[-i2rnp(l - M)/M] M=
n=0 (62)
) In the limiting caseM — oo, one gets the eigenfunction for
X Z Pnymm(X) Oy mm(W) any valuep with eigenvalue ex@2zpL):
m=0 1 N
e w00 = [ ew-izepl RP gl 0 dp. - (63)
= 2 &xPIm(M — 1)(pl —n)/M] 0
n=0 In particular for fractional transforms generated by Eq. (51)
sinfz(pl —n)] Ken/l.x.u), (59) (as it was shown by the example for the fractional FT
sinfr(pl —ny/m] D [107]), the functionsk'| (x) correspond to the elements of the

) ) ) orthogonal sefa; @ }, where the constant factors depend on
whereKg(n/1, x, u) is the kernel of the canonical fractional the generator function.

FT. Application of such types of fractional FTs for image
encryption was reported in [80]. MM = N (I = 1), we

’ . . . omplex and real fractional transform kernels
obtain that the kernel of the Shih fractional transform deflneé: P

by Eq. (44) can also be represented as We have seen in the previous section that if there exists a
complete orthonormal set of eigenfunctidms,} for the R-
N-1 transform, then any coefficient in the harmonic decomposi-
K(p, x,u) = Z exp[—i2znp(1l — N)/N] tion of the fractional kernek,(x, u) (36) can be expressed
n=0 as a linear composition of the elemends (x) ®*(u). For

0 the kernel of the fractional transform to be real, the Fourier
X Y Dppmn(X) Ohymn(U). (60)  spectrum of the fractional kernel with respect to the param-

m=0 eter p has to be symmetric; this means thlat,(x, u)| =
[kn(X, W)|. Since the coefficientk,(x, u) with different

Finally we can conclude that if a complete orthonormal: " S ;
y P indicesn contain disjoint series of the orthogonal elements,

set of eigenfunctions for a given cyclic transform exists, ther}heir amplitudes cannot be equal. In the case that there exists

an infinite number of fractional transform kernels with ana complete orthonormal set of eigenfunctiduis,) for the
arbitrary number of harmonics can be constructed using th;la{ P . 9
-transform, the fractional kernel of tlfe P-transform can-

procedure (51). Some examples of fractional FTs whose ker- . .
AT . . ot be real, even if th&-transform kernel is real.
nels contain different numbers of harmonics were considere . )
As we have seen above the fractional Hilbert kernel can

in [27]. !
inf27] be real, because there is no complete orthonormal set of
eigenfunctions for the Hilbert transform.

12 Some properties of fractional
cyclic transforms 13 Fractional cyclic transforms

Although there is a variety of schemes for the construction of Implemented In OptICS

frapﬂonal transforms, all of them have some common PTOPRBesides the canonical fractional FT discussed in Sections 4
erties. and 11, other fractional cyclic transforms can be performed
If the coefficientskn (x, u) in the decomposition (36) are b .' | Th g fractional ETs d bed in S
real, then the following relationship holds: Y optical setups. Thus the fractional FTs describe I Sec-

' ' tions 10 and 11 and represented as a sum of the weighted
{Rp [f*(x)] (u)}* — RP[F (0] (U). (61) canonical fractional FTs for the corresponding parameters

{an} [see for instance Eqs. (44) and (59)] can be obtained as

This is the case for the canonical fractional FT, the relate@n interference of optical beams at the output of the related

fractional sine, cosine, and Hartley transforms, and th&anonical fractional FT optical systems. In general the most
canonical fractional Hankel transform. fractional cyclic transforms proposed for optical implemen-
tation are closely connected to the canonical fractional FT.

13



The two-dimensional fractional FT of a rotationally sym-  Since the fractional ST, CT, and HT can easily be
metric function leads to the fractional Hankel transform,expressed in terms of the fractional FT, and since optical
analogous to the fact that its two-dimensional FT producesealizations of the fractional FT [25] are well known, opti-
the Hankel transform [128,129]. The fractional Hankel transcal realizations of the fractional ST, CT, and HT can easily
form of a functionf (r) is defined as be constructed. One of the possible schemes for the fractional

HT, based on [27]

REEOIW) = Ha(u) = /O K. r.u frrdr. (64  Re — expia/2) RE [cosa/2) — i sin@/2RE], (68)

where the kerneK (o, 1, u) is given by is given in Fig. 4.

f(X) = RE —~ explia/2) (= =~ RE
\i
x Jo(2rru/sina) (65) cogw/2) sin(a/2)

N
exp(—im/2)

exp(i o)

i sina

K (e, r,u) = exp[i (%4 u?) cota]

with Jo the first-type, zero-order Bessel function. One can
represent the fractional Hankel kernel in the form (51), where
Lhn = —n, |l = 0, and®,(x) are the Laguerre-Gauss func-
tions, which are the eigenfunctions of the fractional Hankel RE[T O] <
transform.

The fractional Hankel transform inherits the main prop-

erties of the fractional FT [103,128] and can be performed by ;re 4: Schematic representation of a fractional Hartley

the fractional FT setups described in Sections 3 and 4, if thg ,nsformer. The setup consists of two fractional REsand
input optical field is rotationally symmetric. The fractional R, two beam splitters, two mirrors, two absorbing plates

Hankel transform can substitute the fractional FT in Manyeoq¢ /2) and sira/2), and two phase plates ekp/2) and
optical signal processing tasks where rotationally symmetrigxp(_i 7/2).

beams are used.

Since the FT is closely related to sine, cosine, and Hartley  As the ST, CT, and HT are widely used in signal pro-
transforms, which are cyclic ones with peribld= 2, several  cessing, the application of their fractional versions in sig-
attempts to introduce the fractional sine, cosine, and HartIeMammage processing is very promising.
transforms were made in [25, 26], where the authors sup- since, as we have seen in Section 10, the kernel of the
posed that the kernels of these transforms are the real part §fctional Hilbert transform has only two harmonics, the
the kernel of the optical fractional FT, the imaginary part ofnumber of possible fractionalization procedures is signifi-
this kernel, or the sum of these two parts, respectively. Nevcantly reduced. The real kernel of the fractional Hilbert trans-
ertheless, they have mentioned that the transforms definggrm introduced in [94,95] and described by Eq. (49) is com-
in such a manner, are not angle additive, and therefore, ighonly used. Optical setups performing this transform were
our view, cannot be interpreted as fractional transforms. Thﬁroposed in [94, 95]. As the fractional Hilbert transform is
kernelsKs, K¢, andKy of the fractional sine, cosine, and 3 weighted mixture of the optical field (u) itself and its
Hartley transforms (ST, CT, HT) [27, 28, 131], respectively,Hilbert transformH (u),
which are closely related to the canonical fractional FT with

kernel K and which are indeed angle additive, are defined R[] (u) = f(u) cosx + H(u) sina,  (69)
as an optical scheme performing the ordinary Hilbert trans-
e Kg(a, x,u) = 2kq(X,u) sin(2rux/sina), form [see Fig. 5, withG(v) = isgn(v)] can easily be
Koo, X, U) = 2Ky (X, U) coS27ux/ sina), adapted to perform a fractional Hilbert transform, by having
Kh(a, x,u) = Kky(X, U)cas2rux/sina), (66)  the filter functionG(v) now taking the more general form
Ke(a, X, U) = Kq(X, U) expli 2zux/ sina), explia sgn(v)] = cosa + i sgn(v) sine.
The Hilbert transform can be considered as a convolu-
where tion of a function with a step function, which is a model
for a perfect edge. Therefore the Hilbert transform produces

_ explia/2)
kO W) = e

where, on the analogy of eip) = cosy + i sing, we have

exp[in(xz 4 u2) cota] , (67) edge enhancement. It was shown that the fractional Hilbert
transform stresses the right-hand and the left-hand slopes

unequally [94-96] and that variation of the fractional order

introduced cag = cose + sing, and where, for easy refer- changes the nature of the edge enhancement. Thug, #or

ence, we have repeated the expression of the canonical frefEZA" 7/2.37/4, the right-hand edges, both edges, and the
tional FT kernelK g eft-hand edges of the input object are emphasized, respec-

tively. In general we can conclude that the fractional Hilbert
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FT whose kernel contains four harmonics, was proposed in
[135].

T
MU

f G®)

| A quantum circuit for the calculation of a fractional

Propagation through a fractional FT system
output

in
put The evolution during propagation through fractional FT sys-

tems of different types of beams frequently used in mod-

Figure 5: Schematic representation of a (fractional) Hilberern optics, such as flattened Gaussian [136, 137], elliptical

transformerz = f, G(v) = explia sgn(v)]. Gaussian [138], and partially coherent and partially polarized
Gaussian-Shell beams [139], has been studied. In particular,
it was shown that the intensity distribution and polarization

transform produces an output image that is selectively edggyoperties in the fractional FT plane are closely related to the

enhanced. This property of the fractional Hilbert transformractional order of the fractional FT system and the initial

makes it a perspective tool for image processing and patteigbherence of the partially coherent beam [139-141].

recognition. Several devices for manipulation of optical beams based

on the fractional FT have been proposed recently.

The fractional FT is applied in the/2 converter, which
is used to obtain focused Laguerre-Gaussian beams from

Fractional optics is a rapidly developing research area. Nové-||erm|te-Gau55|an radiation modes [142)].

applications of the fractional transforms for motion detec- mTrlEir?esirI??h offra (tjilff;acl:t:;/e ﬁp:'%alrfl?r:n\?vm fgr bfii)m d
tion and analysis, holographic data storage, optical neura 1o0tiNg € fractional Founer doma as describe

networking, and optical security (see Section 8) have beell [143].

proposed recently. In this section we give a short overview o{) ; :Bétaerrr?“vrip['eet#gg]f?rzégi r?g;g?{:%ﬁg.ﬁ‘;z Wz\'/r? f'f;d 5
the main directions of development of fractional optics. profi u : using low

resolution amplitude and phase sensors in several fractional
Fourier domains, was proposed in [144].

14 New horizons of fractional optics

Fractional Fourier transformers
Significant work has been done to improve fractional transMotion analysis

formers. Several applications of the fractional FT for moti lysi
The effect of the spherical aberration of a lens on th% everal applications ot the fractiona or motion analysts
ave been proposed.

performance of the fractional Fourier transformation in the A method for the independent estimation of both sur-
%pﬂcgzl]s)llftvsgssaﬁxgstﬁgtbﬁl]:Z?f?gn; ?p[r?:r]i’c\;vlaasbzr;?;)t/if)egace tilting and translational motion using the speckle pho-
: r‘iographic technique by capturing consecutive images in two

on the output intensity distribution of the fractional FT sys- eront fractional Fourier domains. has been proposed in
tem depends on the sign and the absolute value of the ab 45] : url Ins, prop !

ration coefficient. Moreover, Lohmann’s two types of opti- . . . . .
yp P In [146] the fractional FT is applied to airborne, synthetic

cal setups for implementing the fractional FT, are no longer rture radar. slow-moving taraet detection. Since th h
equivalent if the lenses suffer from spherical aberration. aperture ragar, sio oving farget detection. ce the echo

In the optical systems proposed in [22], the fractionalfr_om a ground moving ta_rget can be approxma_ted as a chirp
signal, the fractional FT is used to concentrate its energy. An

order is fixed by the ratio between the focal length of the X X :
erative detection of strong moving targets and weak ones,

lens and the distance of free space preceding and followiné d on filtering in the fractional Fourier domain. has been
the lens. This fact introduces a difficulty in the design of frac- ?cfsosgd ernng € fractional Founer domain, has bee

tional Fourier transformers with a variable order. Fractiona Th licati f fractional FT lators t trol
FT systems with a fixed optical setup but with different frac- € appication ol Tractiona correlators to contro
tional orders, can be obtained by the implementation of pro[novements in a specific range, has_ been con3|d_ered in [147].
grammable lenses, written onto a liquid-crystal spatial ligh ased on the controllable shift variance of fractional corre-
ations, only the movements limited to a specific range are

modulator [133]. . : : ;
A one-dimensional, variable fractional Fourier trans_determlned. Fractional FT correlators operating with a log-

former, based on the application of a reconfigurable eIectrofAOIar representation of two dimensional images (fractional

opcal wavegute,vas propose n (134]. I general, i 117250 conecon slow o con e smlerty of
device produces a variable canonical transformation, with ) - 9P y

ray-transformation matrix for whica = d and for which iImplemented fractional FT and Mellin correlators, providing

the matrix entryb is controlled by the amplitude of an elec- correlation images directly fm image acquisition “T“e’ have
tric field. been proposed to be used in detecting or controlling a spe-

cific range of movements in navigation tasks.
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Beamforming is another application of the fractional FTture map. It has been shown that the use of neural net-
indirectly related to motion analysis. Beamforming is widelyworks trained by the back-propagation algorithm with frac-
used in sensor arrays, signal processing for signal enhancienal FT pre-processing, results in near-perfect differentia-
ment, direction of arrival and velocity estimation, etc. Thetion, around 85% correct range estimation, and around 95%
conventional minimum-mean-squared error beamforming irtorrect azimuth estimation.
the frequency domain or the spatial domain has been gen- The potential application of a spatially varying, fractional
eralized to the fractional Fourier domain case [148]. It iscorrelation in implementing parallel fuzzy association, has
especially useful for radar problems where chirp signals arbeen explored in [93].
encountered. Note that acceleration of the sinusoidal signal
source yields that, due to the Doppler effect, a chirp signatresnel and fractional FT holograms

arrives at the sensor. Such a chirp signal is often transmitted _ . _ .
in active radar systems. Holographic recording/reconstruction techniques are very

well established for image, Fourier, and Fresnel holograms.
In particular, since the fractional FT and the Fresnel trans-
form belong to the class of canonical integral transforms,
Several neural network schemes have been proposege Eq. (3), one can analyze the feasibility of fractional
recently, in which the canonical fractional FT was imple-Fourier holograms in relation to Fresnel holograms prop-
mented. erties. The fundamentals of Fresnel holograms have been

An optical neural network based on the fractional correknown for about four decades. In 1965, Armstrong [149]
lation realized by a VVan der Lugt correlator that employs fracpublished a general contribution on the basic formulation
tional FTs, was proposed in [88]. The error back-propagatioffior describing the recording and reconstruction of two and
algorithm was used to provide the learning rule by whichthree-dimensional Fresnel holograms using paraxial approx-
the filter values are changed iteratively to minimize the erroimation. The total complex amplitude at recording step was
function. formulated as a Fresnel integral. Assuming linearity condi-

The replacement of the mean square error with the logtions on the hologram development, the final field for the
likelihood and the introduction of parallelism to this network reconstructed image was formulated. This general analyti-
significantly improve its learning convergence and recall rateal expression contains the basic contributions to the final
[89] field, namely: illumination conditions of the object, holo-

It was demonstrated in [90] that, due to the shift variancegram diffraction properties, and illumination conditions of
of the fractional convolution, the fractional Van der Lugt cor-the hologram. To this respect, one of the major keys for
relator is more suitable than the conventional one for classifiFresnel holograms with high reconstruction fidelity is res-
cation tasks. For a phase modulation filter, the optimal learmelution, which is determined by the hologram aperture. If the
ing rate to improve the learning convergence and the clasffect of a finite aperture on the complex amplitude field is
sification performance, can quickly be found by Newton’snot taken into account the hologram diffraction modulation
method. turns out to be represented by a Dirac-delta function. Assum-

Besides these static networks with fixed weights and thang that under a fractional FT regime we are dealing with
learning based on the adjustment of the filter coefficientsa particular scaling defined by the order of the transforma-
another type of neural networks to implement the fractionation, one can assert that resolution plays a similar role as in
FT has been proposed [91]. In this scheme the fractionad standard Fresnel hologram. Taking into account the finite
FT is used for pre-processing of input signals to neural netaperture implies that an intrinsic dependence of the holo-
works. Adjusting the fractional order of the fractional FT of gram quality (fidelity) on the aberrated reconstructed wave-
the input signal leads to an overall improvement of the neufront has also to be considered.
ral network performance, as has been demonstrated on the Recently, several contributions on these subjects have
example of recognition and position estimation of differentbeen published. An algorithm for digital holography based
objects from their sonar returns. In [92] a comparative analyen the so-called Fresnelets, which arise when the Fresnel
sis has been made of different approaches of target differetransform is applied to a wavelet basis, has been developed in
tiation and localization, including the target differentiation [150]. An experimental digital holography setup was shown,
algorithm, Dempster-Shafer evidential reasoning, differenas well as results for Fresnelet holograms. An interesting
kinds of voting schemes, statistical pattern recognition techresult of this paper is related to the uncertainty relation for
nigues (th&k-nearest neighbor classifier, the kernel estimatorthe Fresnel transform as a condition for signal localization.
the parameterized density estimator, linear discriminant analFhe condition suggests that Gaussian and Gabor-like func-
ysis, and the fuzzy-means clustering algorithm), as well tions, modulated with a Fresnel kernel, optimize the process-
as artificial neural networks, trained with different input sig-ing and reconstruction of Fresnel holograms. This is related
nal representations obtained using pre-processing techniquiesthe illumination conditions of the object and the behavior
such as discrete ordinary and fractional Fourier, Hartleyof the hologram aperture as an apodizing optical pupil.
and wavelet transforms, and Kohonen'’s self-organizing fea- Other experiments for implementing Fresnel holograms

Neural networks implemented fractional FT
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on LCDs have been reported [151]. The hologram is obtaineth [122]. In the analogy with canonical fractional Fourier
by back-propagating the object function applying an inversend Hankel transforms the fractional Laplace and Barut-
Fresnel transform. Results indicate the presence of noise @irardello transforms have been introduced in [156].
the reconstruction due to the limited number of amplitude The applications of these transforms in science and engi-
levels of the signal (8 bits). neering is still subject of research.

Other authors [152] claim the implementation of multiple
fractional FT holograms. Nevertheless, the lack of informa- .
tion related to critical parameters as real illumination condi—‘l-5 Conclusions
tions, object size, hologram size, type of holographic mate-

rial, and minimum distance between objects for avoidingwe have reviewed the fractional transformations imple-

aliasing, makes it difficult to arrive to a precise conclusionMeéntéd in paraxial optics and their applications for optical

on the actual proposed technique. information processing: phase retrieval, signal/image char-

From the above mentioned results we can assert th@Cterization, optical beam manipulation, pattern recognition
Fresnel and fractional FT holograms show great practicaﬁmd classification, adaptive filter design, encryption, water-

interest for signal localization, data coding and decoding, ang'@rking, motion detection, holography etc.. A general algo-
optical security systems. rithm of fractionalization, which allows to construct various

fractional transforms related to a given cyclic transform, has
been discussed. The usefulness of a specific fractional trans-
form is related to its optical feasibility, as well as to its pos-
Another direction for further research is the investigation ofsible application in signal/image processing. The analysis of
novel types of fractional transforms: their properties, applithe harmonic contents for various types of fractional trans-
cations, and possible implementations in optics. forms offers a procedure for their experimental realization.
The fractional cosine, sine, and Hartley transforms andt seems, that the fractional sine, cosine, Hartley, and Hankel
their digital implementations were discussed in [27, 28, 131{ransforms, discussed in Sections 13 and 14, due to their sim-
153]. It was shown that the fractional cosine and sine tranglarity to the canonical fractional FT, may act as a substitute
forms are useful for processing one-sided signals, i.e., th&r itin many tasks. The usage of the fractional Hilbert trans-
independent variable is an element ot{f), From our point  form for selective edge enhancement produces very promis-
of view, the different types of fractional FT, ST, CT, and ing results. The exploration of other recently proposed frac-
HT, constructed by the general fractionalization algorithmtional transforms is expected in near future.
(see Sections 10 and 12) may be suitable for signal/image Beside the theoretical and numerical simulation works
encryption and watermarking. Thus an image watermarkdemonstrating an important impact of the optical implemen-
ing scheme based on different types of fractional discretéation of the fractional FT, the experimental realization of the
Fourier, Hartley, cosine, and sine transforms was proposeebrresponding devices and techniques takes up a significant
in [154]. To remove the watermarks in this case, the typelace of research.
of the used fractional transform and the orders of the frac- We believe that fractional optics significantly increases
tional domains where signatures were introduced, have to d8e importance of analog optical information processing. The

Novel fractional transforms

known. design of new devices based on fractional optics, will lead to
Several other fractional transforms have been introducednified approaches of signal/image processing used in optics
recently. and electrical engineering, which will significantly enrich

The fractional FT of log-polar representation of a two the fields of optoelectronics, optical security technology, and
dimensional image, generates the fractional Mellin transforn@ptical computing.
[122,147].
Another fractional transform, the complex fractional FT,
closely related to the canonical fractional FT has been intro’-A‘CkﬂOWIedgments
duced in [155]. Witk = &1+i&2 andn = n1+in2, the kernel

of the complex fractional FT takes the form, cf. Eq. (11) This work has been financially supported partially by the

project TIC 2002-01846 from the Spanish Ministry of Sci-
] ence and Technology and by the project 1ST-2001-34168

“Two-dimensional optical storage for high density and high
data rate” from the European Commission. T. Alieva thanks

Based on the approach of eigenfunction kernel decomt_he Spanish Ministry of Science and Technology (“Ramony

position similar to [27, 28], some new fractional integral Cajal” grant).
transforms, including the fractional Mellin transform, a frac-
tional transform associated with the Jacobi polynomials,
a Riemann-Liouville fractional derivative operator, and a
fractional Riemann-Liouville integral, have been proposed
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