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Abstract

The parameters of the transfer matrix describing a first-order optical system that is a cascade
of k identical subsystems defined by the transfer matrix M, are determined from considering
the subsystem’s eigenfunctions. A condition for the cascade to be cyclic is derived. Particular
examples of cyclic first-order optical systems are presented. Structure and properties of
eigenfunctions of cyclic transforms are considered. A method of optical signal encryption by
using cyclic first-order systemsis proposed.
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1 Introduction

Cascades of first-order optical systems[1] including thin lenses, spherical mirrors, graded index
media, etc. have recently attracted much attention in the field of optical signa processing.
In particular they are used in phase space tomography [2], where the complex amplitude (in
the case of coherent light) or the correlation function (in the case of partially coherent light)
is reconstructed from the intensity distributions measured at the output planes of the cascade
subsystems. The application of first-order optical system cascades for the characterization of the
complex structureof optical fields hasbeen proposedin Refs. [3, 4, 5]. Ingenerd, theoptical field
propagating through a cascade of first-order systemsis, in a certain way, similar to the wavel et
transform, and this promises to be important for optical signal processing. Note also that a laser
cavity can be represented as a cascade of first-order optical systems, aswell.

A cascade is usually constructed from a number of identical first-order optical subsystems.
Each of them is described in the paraxial approximation of the scalar diffraction theory through
the canonical integra transform, also known as the generalized Fresnel transform (GFT) [6, 7, 8,
9, 10] . Thus, the evolution of the complex field amplitude f(x) during propagation through a
first-order optica system, isthe GFT of theinput field amplitude f; (x)

fo(u) = RM[fi(0] (u) = / fi () K (X, u)dx, (1)
with the kernel
(1/\/E) exp (im (AX* + DU — 2xu) /B) B#0
Km (X, u) = 2

VA exp (inCu?/A) §(x — Au) B=0
parametrized by areal 2 x 2 matrix
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with the determinant AD — BC equal to 1. The parameters A, B, C, D depend on the concrete
first-order system and the wavelength. For the sake of simplicity we will consider the one-
dimensional case.

As an example, we mention that the GFT parametrized by a matrix with A= D = cos6 and
B = —C = sin# corresponds, except for a factor exp(i6/2), to the fractional Fourier transform
(FT) [11, 12, 13, 14].

Due to the cascading property of the canonical integral transform

RM2 RM1 — RMs (4)

where M3 = M, x My, thecomplex field amplitudeat the output plane of the cascade of k identical
first-order systems, each of which described by the same transfer matrix M, can be represented
as the GFT for amatrix MK of the input complex field amplitude. The connection between the
parameters of the transfer matrix M and its power MX was considered in Ref. [15]. Based on
matrix calculusit was shown that

MK = &M — g,
mk = Arhobk-1, 5
& = MUk o4 Akl

where A, and X, are the eigenval ues of the matrix M.

In this paper we derive an alternative method of determining the parameters of the cascade
transfer matrix based on the anaysis of the self-imaging phenomenon in first-order optical
systems. This approach allows us to formulate a simple condition for a cascade of canonical
integral transformsto be cyclic and to classify first-order optical systemsin accordance with this
definition. We show that there is awide group of various wavefronts which are self-reproducible
under propagation through a cyclic first-order optical system; meanwhile, the form of the self-
reproducible wavefronts for noncyclic systems is strictly defined.

We investigate the structure and the properties of the eigenfunctions for the cyclic GFTs
and propose a method for their generation. We show that any complex field amplitude can
be decomposed into the finite set of orthogona eigenfunctions for a cyclic GFT. The signa
decompositioninto this set of self-GFT functionsisthen used for the optical encryption by using
cyclicfirst-order systems.

2 Eigenfunctionsfor the generalized Fresnel transform

The self-imaging phenomenon of coherent fields in a first-order optical system is described in
the framework of the eigenfunctions of the GFT. An input complex field amplitude f;(x) isan
eigenfunction fy (x) of the canonical operator R corresponding to the given optical system if

RM [ fm (0] (u) = afu (u), (6)

wherea = exp(i2r¢) isthe (generally complex) eigenvalue[6]. From Parseval’s relation for the
canonical transform of thefield amplitudewith finiteenergy, | | f(x)|2dx < oo, wehavel|al = 1,
and therefore ¢ isreal. Note that for infinite-energy wavefronts ¢ can be complex. The structure
and the properties of the eigenfunctions of the particular cases of the GFT corresponding to the
Fourier transform and to the fractional Fourier transform were investigated in Refs. [16, 17, 18,
19, 20, 21, 22].

It is easy to see from Egs. (4) and (6) that an eigenfunction fy(x) for the canonica
integral operator RM with eigenvalue a, is also an eigenfunction with eigenvalue ak for the GFT
parametrized by the matrix MK, wherek is an integer.
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From the linearity of the GFT and from the definition (6) it follows that a sum of
eigenfunctionsfor agiven GFT operator RM with identical eigenvaluesa, isalso an eigenfunction
for RM with the same eigenvalue a.

The structure of the eigenfunctionsfor the GFT (the so-called self-GFT functions) has been
considered in Ref. [6]. It was shown there that the functions

1
Dn(x) = (V72"an!) "2 exp (=2 (1 +iB) (x/2)?) Hn (X/1) (7)

are eigenfunctionsfor the GFT parametrized by the matrix (3) with eigenvalue a = exp(—i(n +
%)9), where Hy, (u) are the Hermite polynomialsand wherethe parameters 6, A, and 8 are defined
from the parameters of the transfer matrix by

0 = arccos(3(A+ D))
1
A2 = 2B(4—(A+D)?) 2 (8)
1
B = (A-D)(4—-(A+D)?) 2.

Thisimpliesthe relationship
RY [@n(0] (1) = exp (=i (n+ 3)6) Pn(W) )
for the GFT parametrized by amatrix M with
A = cosf+ Bsing
A2sing

B
C = —((B*+1)/r?)sing
D = cosf— Bsiné.

(10)

Notethat 8 = 0only if A= D = cosé. Inthat casewehave B = 12sing and C = —(1/A2)siné,
which represents the scaled fractional Fourier transform with eigenfunctions

1
Pn(X) = (vVT2"An!) "2 exp (=3 (x/2)%) Hn(X/2). (11)

Unfortunately, in limiting cases like the Fresnel transform (A2 — oo and 6 — 0) and the
scaling transform (A* — 0 and 2 + 1 — 0), the application of the relationships (7) and (8) for
the construction of the eigenfunctionsis problematic. We therefore confine ourselvesto systems
described by amatrix M for which |A+ D| # 2 and B, C # 0. Moreover, we remark that, since
cosf = 2(A+ D), theeigenvalues a = exp(—i(n + 3)6#) depend on the parameters A and D. If
|A+ D| > 2, the parameter 6 becomes complex: 6 = R (0) +iI(0), with R () = mk.

The set of functions {®,(X)} forms a complete orthonormal set. Hence, aself-GFT function
with eigenvalue a can be represented as a superposition of certain ®,(x) modes with the same
eigenvaluea. In order to have the same a, theindices {n} should satisfy the relationship

2n(N+¢) = —(n+1)6, (12)

where ¢ isaconstant defining the eigenvalue exp(i2rg) of thiseigenfunction and where N isan
integer.

It has been proved in Ref. [6] that for the optical system described by the GFT parametrized
by a matrix with parameters A and D such that 6/27 = arccos(%(A + D))/2m is complex or
irrational, the functions @, (x) are the only solutionsof Eq. (6). Let us consider, as an example,
the eigenfunctions for the GFT parametrized by a matrix with parameters A = D = cosha and
B = C = sinha. Since A = D, it followsfrom Egs. (10) that 8 = 0 and B = —A*C, whichyields
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12 =iandf = ia. Theset of orthonormal eigenfunctions(7) with eigenvaluesa = exp((n+ %)oe)
for this system can now be written as

1
Dn(x) = (V2" exp(in/4)n!) 2 exp (1ix?) Hy (xexp(—in/4)) . (13)

1
We conclude that the chirp function ®o(x) = (/7 exp(in/4)) 2 exp (3ix?) is self-reproducible
under propagation through this system. Note that the eigenvalues of the different modes &, (x)
and &, (x) for the same value « are different. Thismeans that a superposition of these modesis
not an eigenfunction of the corresponding GFT.

If the parameters of thetransfer matrix are suchthat 6/27 = arccos(% (A+D))/2risrational,
then 6 can be represented as 6 = 27m/k with m and k integers, and there are severa sets of
indices {n} that satisfy EqQ. (12). The structure and the properties of the eigenfunctions for the
GFT characterized by rational 6/2s will be considered in Section 4.

3 Powersof transfer matricesand cyclic cascades

As we have learned before, an eigenfunction ®,(x) for the operator RV defined by Egs. (7)
and (10) with eigenvalue a is aso an eigenfunction for the operator RM* with eigenvalue ak =
exp(—i(n + %)k@), where k is an integer. Therefore, the parameters of the k-th power M¥ of the
meatrix M have to satisfy equations which are similar to Egs. (10):

A = coskd + Bsinks

BK = A2sinkd

Ch = —((B2+1)/r?)sinkd (4
D® = coskd — Bsinks.

From Egs. (8), (10), and (14), we conclude that the parameters of the matrix M¥ can alternatively
be represented in terms of the parameters of the matrix M:

A® = coskd + (A — D)sinkd/sing

BK = Bsinkg/sind

ck = Csinkg/sing (15)
D®W = coskd — 3(A— D)sinks/sing

with cosf = %(A + D). Equations (15) allow an easy determination of the resulting matrix MK
of the cascade of k identical first-order systems. For the fractiona Fourier transform system, for
instance, determined by 8 = 0 and A% = 1, and henceby A= D = cost and B = —C = sind, we
immediately have A® = D® = coskd, and B®¥ = —C® = sinke.

From Egs. (15) it iseasy to seethat if

6 = 27m/k, (16)

MK = Z(cl) (1)) (17)

Thisimpliesthat the cascade of k optical systems described by amatrix M with parameters A and
D such that

with k and m integers, we have

1(A+ D) = cos(2rmy/ k), (18)

produces the identity transform, and hence M = 17X, We call these systems cyclic of order k.
Note that, without loss of generality, we may choose0 < m < k.

4



In the specia casethat m = 1in Egs. (16) and (18), we denote the corresponding k-th order
cyclic transfer matrix by My; its parameters follow from Egs. (10) with 6 = 27/ k:

A« = cos(2r/k) + Bsin(2r/K)
Bc = A2sin(2z/k)

Cc = —((B+1)/r?)sin(2r/k)
Dk = cos(2n/k) — Bsin(2r/K).

(19)

From Egs. (15) we conclude that the general k-th order cyclic matrix M with 6 = 27m/ k, can be
expressed as the m-th power M} of My; My can thus be considered as the m-th root MY ™ of M.
Moreover, the j-th power of M isequal to the I-th power of My, where the integers j and | are
related to each other by mj =1 + Nk,

M = M = MU L — g, (20)

and where we have used the property that M'k‘ is the identity matrix. We conclude that cascade
properties of any cyclic transform of order k defined by a transfer matrix M can be described by
the matrix My = MY™,

Asalfirst example of acyclic system, we mention the fractional Fourier transform system for
an angle 6 = 27m/ k. Note that the cascade of afinite number of identical fractional FT systems
cannot produce the identity transformation if 6/2s isirrational.

It iswell-known that a cascade of k = 4 Fourier transforming systems produces the identity
transformation. We now determine an entire class of canonical systems exhibiting this property.
From Eqg. (16) it follows that such systems have the property 6 = 7m/2. Using Egs. (10), we
conclude that for even m one gets the inverse or the identity transformation, A= D = £1 and
B = C = 0, whilefor odd m the transfer matrix can be expressed as

A B
M= ( —~(A2+1)/B —-A ) (2)

It iseasy to seethat the case A= 0and B = 1 correspondsto the Fourier transforming system. In
genera theinverse matrix, theidentity matrix, and the matrix (21) are the 4-th root of theidentity
matrix: M* = |. Thekernel of the GFT parametrized by matrix (21) iswritten as

Kya (X, u) = (1/@) exp (i7 (AOZ — u?) — 2xu) /B).. (22)

Note that the square of the matrix (21) correspondsto the inverse matrix.
Let us consider an optical setup that performs such a transform. A typical optical system
consisting of athin lenswith focal length f (normalized to the wavelength) can be described by

the transfer matrix
M — 1-2/f zn+2—-7n2/f
- —1/f 1- Z]_/f ’

where z; and z, are the (normalized) distances from the lens to the input and the output plane,
respectively. Such an optical systems performs a GFT parametrized by a |1/4 matrix (21) if A+
D =0, whichisequivalentto 2f = z; + z,. We then have

wa_ ( @a- )/2f (Z+2D)/2f
- —1/f —(21—22)/2f )

In particular for zz = z, = f one has a Fourier transforming system. Another choiceisz =0
and z, = 2f, which yields the matrix

-yt 1 )
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Let us now construct the class of transforms described by the matrix which isthe k-th root of
the Fourier transfer matrix. In this case we have

M":(_Ol (1)) (23)

and it follows from Egs. (15) that A = D = cosf and B = —C = (—1)Msinf = sin((—1)M0),
with k6 = 2m + 1)z/2. Note that the similar result was obtained in [15]. In genera the
transformation described by the k-th root of the Fourier transfer matrix corresponds to the
fractional FT at the angle 6 = (—1)M(2m + 1)7r/2k. Due to the periodicity property of the
fractional FT ROt2™ = R, the cascades of j (j = 1, ..., 4k) identical systems for different m
produce the same transformations of the input fields corresponding to the fractional FT at the
angles {0 = mj/2k|j =1, ..., 4k } but taken in a different order. Speaking about angle evolution
of the fractional FT, it ismore common to consider consequently increasing angles in the region
[0, 2#[. Thiscorrespondsto m = 0.

4 Structure and properties of eigenfunctions for cyclic canonical
transforms

Aswe have seen above, cascade propertiesof any cyclic transform of order k defined by atransfer
matrix M with 2(A + D) = cos(2zm/k), can be described by the matrix My = MY/™. Taking
into account that an eigenfunction for the operator RM is also an eigenfunction for the operator
R and in particular, if mj = 1+ Nk, an eigenfunction of the operator RM"™ we can conclude
that the GFTs parametrized by the matrices M and MY™ = M, have the same eigenfunctions.
Let usfind the eigenfunctionsfor the GFT related with the matrix My, whose parameters follow
from Egs. (19).

A sdf-GFT function with eigenvaluea = exp(i2r¢) can be represented as a superposition of
the modes @, (x) whoseindices {n} satisfy the relationship (12)

N+¢=—(+3)/k (24)

where ¢ isaconstant defining the eigenval ue of this self-GFT function and where N isan integer.
Itiseasy to seethat we have k different sets of modes for which relation (24) holds

n= L+k|,

whereL=0,1,...,k—1and| isaninteger. Then aself-GFT function for the matrix (19) with
eigenvaluea = exp (—i2r(L + 3)/k) isdefined as

fie (u) = Z OL+ki Ptk (W), (25)
=0

where g are complex constants. Thisfunction is aso an eigenfunction with eigenvalue a =
exp (—i2m(L + %)m/ k) for the general k-th order cyclic GFT parametrized by the matrix M for
any integer m.

L et usbriefly mentionthemain propertiesof the self-GFT functionsfor cyclic operatorswhich
are similar to the properties of the self-fractional FT functions considered in [22]. Aswell asin
the case of the self-fractional FT functions, the self-GFT functions for the same operator with
different eigenvalues (i.e., different indices L) are orthogonal to each other, because they are
expanded into digjoint series of the orthogonal modes ®,,.



Since the ®,, modes form a complete orthogonal set, any function g(u) can be represented as
their superposition

g(W) = Y gnPn(W). (26)
n=0

Subdividing the seriesinto partial ones

k—1
g(u) = Z (Z Lk DLk (u)) =Y fie) (27)
L=0

L=0

we conclude that any function g(u) can be represented as alinear superposition of k orthogonal
self-GFT functions ka(u) of a given cyclic operator of order k. Note that there are many of
cyclic operators of order k, which differ from each other by the parameters A and 8. The
decomposition of theoptical imageintothe set of self-GFT functionscan beuseful for theanalysis
of complex images, their processing through first-order optical systems, in optical testing, and in
the development of filtering devices.

On the other hand, a self-GFT function for the operator RM described by the transfer matrix
(19), can be constructed from any generator function g(x) through the following procedure

k 2 (L + 2)l I
) = Z (M) R [g00] (u). (29)

1=0

An optical configuration for the synthesis of a self-GFT function is similar to the one that was
proposed for the synthesis of self-Fourier functions[23].

Note that self-imaging of the complex field amplitude, being a self-GFT function for the
corresponding cyclic cascade of first-order optical systems, is similar to the Talbot effect where
periodic wavefronts of a certain period are self-reproducible under propagati on through a cascade
of identical Fresnel systems.

5 Optical encryption by using cyclicfirst-order optical systems

The application of optica systems for data security and encryption is a perspective field in
optical engineering [24]. The main advantagesof optical encryption are the possibility of parallel
processing of two-dimensional optical signalsand the possibility of hidinginformationin several
wave parameters like amplitude, phase, wavelength, polarization, etc. In this paper we consider
the application of cyclic first-order optical systemsfor signa encryption.

The method of optical encryption proposed here isbased on the signal decompositioninto the
set of self-GFT functions. Asit followsfrom Eq. (27), any signal g(u) from L? can be represented
as a sum of k self-GFT functions f,-(u). In the limiting case k — co we have the generalized
Hermite-Gauss expansion (26).

The encryption procedure of a signal g(u) consists of (i) its decomposition into the set of
k orthogona self-GFT functions f!(u) (L =0, ...,k — 1), (i) multiplication of each self-GFT
function by a secret factor a_ # 0, and (iii) the composition of an encrypted signal G(u) =
Z'f;%, a_ ka(u) from the weighted self-GFT functions a_ ka(u). The complete procedure is
represented in the following scheme:

fow) - [ ®ao — apfl(u)
guw =1 ftw - | ®a — a frw — G(u) (29)
il — | @1 | = acifi i)



For convenience, we suppose that the signa g(u) itself is not a self-GFT function for the given
first-order optical system.

The procedure does not change the set of self-GFT functions that compose the initial signal,
but produces only an ateration of their contributions in the composition. The information is
hidden by choosing an order k of self-GFT functionsand manipulating with the secret key-factors
a,, which, ingeneral, may becomplex. Therefore, for agiven cyclic system of order k one gets 2k
keys. Theoptical set-up introducing the key-factor multiplication consistsof anumber of constant
amplitude-phase screens, different for every self-GFT function. The encrypted signal can then be
transmitted via a common, unprotected way.

The procedure of decrypting is similar to the encryption procedure as can be seen from the
following scheme

ao fO(u) - [ et - fow
Gu) = { a_ f-) - | ®art | - flw) = g(u) (30)
a1t - | ®at | - )

and is reaized using the same optical equipment by only changing the amplitude-phase screens.

Let us demonstrate the method by the simplest example of signal encryption, i.e., its
decompositionin even and odd functions (k = 2), which are the self-fractional Fourier functions.
We suppose that our signal is neither even nor odd; for even or odd signals, a larger-order
encryption procedure k should be applied. The encrypted signal can be written as

G(u) = (9w (ap +a1) +g(—w(a —a1)) /2,

where ag # a;. In accordance with this procedure areal signal g(u) = u/(u + b) transformsto
the signal G(u) = u(ba; — uag)/(b? — u?), which is, in general, complex (if at least one of the
factors ag or a; is complex).

We findly note that the generalization of the encryption procedure to the two-dimensiona
case increases information security due to the extension of the number of keysand the possibility
of applying different ordersky and ky for the coordinates x and y.

6 Conclusions

Starting from the analysis of the eigenfunctions of the GFT parametrized by a matrix M, we
have derived the expressions for the k-th power MX of the transfer matrix describing the cascade
of k GFTs. It has been shown that matrices for which the parameters A and D are such that
arccos(%(A + D)) = 2mrm/k, describe cyclic transformations of order k, which means that a
cascade of k such transformations produces the identity transform. It has been found that certain
powers of the cyclic transform correspond to its mth root.

We have derived the genera expression for the eigenfunctions for cyclic GFT and have
discussed their main properties. In particular it has been shown that any function (complex field
amplitude) can be represented as alinear superposition of k orthogonal eigenfunctionsof acyclic
GFT of order k. A generation procedure of the GFT eigenfunctions has been proposed.

A method of optical encryption by using cyclic first-order systems has been discussed. It is
based on asignal decompositioninto the set of self-GFT functionsand changing their coefficients
by multiplyingthem by the secret codes, whichin general are complex numbers. Thecomposition
of theseweighted self-GFT functionsisan encrypted signal and can betransmitted viaacommon,
unprotected way. The decrypting procedureis similar to the encrypting one. Both of them can be
realized by using quadratic refractive index optical systemslikelenses, mirrors, optical fibers, etc.
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