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Abstract

The parameters of the transfer matrix describing a first-order optical system that is a cascade
of k identical subsystems defined by the transfer matrix M, are determined from considering
the subsystem’s eigenfunctions. A condition for the cascade to be cyclic is derived. Particular
examples of cyclic first-order optical systems are presented. Structure and properties of
eigenfunctions of cyclic transforms are considered. A method of optical signal encryption by
using cyclic first-order systems is proposed.
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1 Introduction

Cascades of first-order optical systems [1] including thin lenses, spherical mirrors, graded index
media, etc. have recently attracted much attention in the field of optical signal processing.
In particular they are used in phase space tomography [2], where the complex amplitude (in
the case of coherent light) or the correlation function (in the case of partially coherent light)
is reconstructed from the intensity distributions measured at the output planes of the cascade
subsystems. The application of first-order optical system cascades for the characterization of the
complex structure of optical fields has been proposed in Refs. [3, 4, 5]. In general, the optical field
propagating through a cascade of first-order systems is, in a certain way, similar to the wavelet
transform, and this promises to be important for optical signal processing. Note also that a laser
cavity can be represented as a cascade of first-order optical systems, as well.

A cascade is usually constructed from a number of identical first-order optical subsystems.
Each of them is described in the paraxial approximation of the scalar diffraction theory through
the canonical integral transform, also known as the generalized Fresnel transform (GFT) [6, 7, 8,
9, 10] . Thus, the evolution of the complex field amplitude f (x) during propagation through a
first-order optical system, is the GFT of the input field amplitude fi(x)

fo(u) = RM [ fi(x)
]
(u) =

∫ ∞
−∞

fi(x)KM (x, u)dx, (1)

with the kernel

KM (x,u) =


(

1/
√

iB
)

exp
(
iπ
(

Ax2 + Du2 − 2xu
)
/B
)

B 6= 0

√
A exp

(
iπCu2/A

)
δ(x − Au) B = 0

(2)

parametrized by a real 2× 2 matrix

M =
(

A B
C D

)
(3)
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with the determinant AD − BC equal to 1. The parameters A, B,C, D depend on the concrete
first-order system and the wavelength. For the sake of simplicity we will consider the one-
dimensional case.

As an example, we mention that the GFT parametrized by a matrix with A = D = cos θ and
B = −C = sinθ corresponds, except for a factor exp(iθ/2), to the fractional Fourier transform
(FT) [11, 12, 13, 14].

Due to the cascading property of the canonical integral transform

RM2 RM1 = RM3 (4)

where M3 = M2×M1, the complex field amplitude at the output plane of the cascade of k identical
first-order systems, each of which described by the same transfer matrix M, can be represented
as the GFT for a matrix Mk of the input complex field amplitude. The connection between the
parameters of the transfer matrix M and its power Mk was considered in Ref. [15]. Based on
matrix calculus it was shown that

Mk = ξk M − µk I,
µk = λ1λ2ξk−1,

ξk = λk−1
1 + λk−2

1 λ2 + ... + λ1λ
k−2
2 + λk−1

2 ,

(5)

where λ1 and λ2 are the eigenvalues of the matrix M.
In this paper we derive an alternative method of determining the parameters of the cascade

transfer matrix based on the analysis of the self-imaging phenomenon in first-order optical
systems. This approach allows us to formulate a simple condition for a cascade of canonical
integral transforms to be cyclic and to classify first-order optical systems in accordance with this
definition. We show that there is a wide group of various wavefronts which are self-reproducible
under propagation through a cyclic first-order optical system; meanwhile, the form of the self-
reproducible wavefronts for noncyclic systems is strictly defined.

We investigate the structure and the properties of the eigenfunctions for the cyclic GFTs
and propose a method for their generation. We show that any complex field amplitude can
be decomposed into the finite set of orthogonal eigenfunctions for a cyclic GFT. The signal
decomposition into this set of self-GFT functions is then used for the optical encryption by using
cyclic first-order systems.

2 Eigenfunctions for the generalized Fresnel transform

The self-imaging phenomenon of coherent fields in a first-order optical system is described in
the framework of the eigenfunctions of the GFT. An input complex field amplitude fi(x) is an
eigenfunction fM (x) of the canonical operator RM corresponding to the given optical system if

RM [ fM (x)
]
(u) = a fM (u), (6)

where a = exp(i2πϕ) is the (generally complex) eigenvalue [6]. From Parseval’s relation for the
canonical transform of the field amplitude with finite energy,

∫ | f (x)|2 dx <∞, we have |a| = 1,
and therefore ϕ is real. Note that for infinite-energy wavefronts ϕ can be complex. The structure
and the properties of the eigenfunctions of the particular cases of the GFT corresponding to the
Fourier transform and to the fractional Fourier transform were investigated in Refs. [16, 17, 18,
19, 20, 21, 22].

It is easy to see from Eqs. (4) and (6) that an eigenfunction fM (x) for the canonical
integral operator RM with eigenvalue a, is also an eigenfunction with eigenvalue ak for the GFT
parametrized by the matrix Mk , where k is an integer.
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From the linearity of the GFT and from the definition (6) it follows that a sum of
eigenfunctions for a given GFT operator RM with identical eigenvalues a, is also an eigenfunction
for RM with the same eigenvalue a.

The structure of the eigenfunctions for the GFT (the so-called self-GFT functions) has been
considered in Ref. [6]. It was shown there that the functions

8n(x) =
(√
π2nλn!

)−1
2 exp

(−1
2 (1+ iβ)(x/λ)2

)
Hn (x/λ) (7)

are eigenfunctions for the GFT parametrized by the matrix (3) with eigenvalue a = exp(−i(n +
1
2 )θ), where Hn(u) are the Hermite polynomials and where the parameters θ, λ, and β are defined
from the parameters of the transfer matrix by

θ = arccos
( 1

2 (A + D)
)

λ2 = 2B
(
4− (A + D)2

)−1
2

β = (A− D)
(
4− (A + D)2

)−1
2 .

(8)

This implies the relationship

RM [8n(x)] (u) = exp
(−i(n + 1

2 )θ
)
8n(u) (9)

for the GFT parametrized by a matrix M with

A = cos θ+ β sin θ
B = λ2 sin θ
C = −((β2 + 1)/λ2

)
sinθ

D = cos θ− β sin θ.

(10)

Note that β = 0 only if A = D = cos θ. In that case we have B = λ2 sin θ and C =−(1/λ2 ) sinθ,
which represents the scaled fractional Fourier transform with eigenfunctions

8n(x) =
(√
π2nλn!

)−1
2 exp

(−1
2 (x/λ)

2)Hn (x/λ). (11)

Unfortunately, in limiting cases like the Fresnel transform (λ2 → ∞ and θ → 0) and the
scaling transform (λ4 → 0 and β2 + 1→ 0), the application of the relationships (7) and (8) for
the construction of the eigenfunctions is problematic. We therefore confine ourselves to systems
described by a matrix M for which |A+ D| 6= 2 and B,C 6= 0. Moreover, we remark that, since
cos θ = 1

2 (A + D), the eigenvalues a = exp(−i(n + 1
2 )θ) depend on the parameters A and D. If

|A+ D| > 2, the parameter θ becomes complex: θ = <(θ) + i=(θ), with <(θ) = πk.
The set of functions {8n(x)} forms a complete orthonormal set. Hence, a self-GFT function

with eigenvalue a can be represented as a superposition of certain 8n(x) modes with the same
eigenvalue a. In order to have the same a, the indices {n} should satisfy the relationship

2π(N + ϕ) = −(n + 1
2 )θ, (12)

where ϕ is a constant defining the eigenvalue exp(i2πϕ) of this eigenfunction and where N is an
integer.

It has been proved in Ref. [6] that for the optical system described by the GFT parametrized
by a matrix with parameters A and D such that θ/2π = arccos( 1

2 (A + D))/2π is complex or
irrational, the functions8n(x) are the only solutions of Eq. (6). Let us consider, as an example,
the eigenfunctions for the GFT parametrized by a matrix with parameters A = D = coshα and
B = C = sinhα. Since A = D, it follows from Eqs. (10) that β = 0 and B =−λ4C, which yields
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λ2 = i and θ= iα. The set of orthonormal eigenfunctions (7) with eigenvalues a= exp((n+ 1
2 )α)

for this system can now be written as

8n(x) =
(√
π2n exp(iπ/4)n!

)−1
2 exp

(
1
2 ix2)Hn (x exp(−iπ/4)) . (13)

We conclude that the chirp function80(x) =
(√
π exp(iπ/4)

)−1
2 exp

(
1
2 ix2

)
is self-reproducible

under propagation through this system. Note that the eigenvalues of the different modes 8n(x)
and 8m(x) for the same value α are different. This means that a superposition of these modes is
not an eigenfunction of the corresponding GFT.

If the parameters of the transfer matrix are such that θ/2π = arccos(1
2 (A+D))/2π is rational,

then θ can be represented as θ = 2πm/k with m and k integers, and there are several sets of
indices {n} that satisfy Eq. (12). The structure and the properties of the eigenfunctions for the
GFT characterized by rational θ/2π will be considered in Section 4.

3 Powers of transfer matrices and cyclic cascades

As we have learned before, an eigenfunction 8n(x) for the operator RM defined by Eqs. (7)
and (10) with eigenvalue a is also an eigenfunction for the operator RMk

with eigenvalue ak =
exp(−i(n + 1

2 )kθ), where k is an integer. Therefore, the parameters of the k-th power Mk of the
matrix M have to satisfy equations which are similar to Eqs. (10):

A(k) = cos kθ + β sin kθ
B(k) = λ2 sinkθ
C(k) = −((β2 + 1)/λ2 ) sin kθ
D(k) = cos kθ − β sin kθ.

(14)

From Eqs. (8), (10), and (14), we conclude that the parameters of the matrix Mk can alternatively
be represented in terms of the parameters of the matrix M:

A(k) = coskθ + 1
2 (A − D) sin kθ/ sin θ

B(k) = B sin kθ/ sin θ
C(k) = C sinkθ/ sin θ
D(k) = coskθ − 1

2 (A − D) sin kθ/ sin θ

(15)

with cos θ = 1
2 (A + D). Equations (15) allow an easy determination of the resulting matrix Mk

of the cascade of k identical first-order systems. For the fractional Fourier transform system, for
instance, determined by β= 0 and λ2 = 1, and hence by A = D = cos θ and B =−C = sinθ, we
immediately have A(k) = D(k) = cos kθ, and B(k) = −C(k) = sinkθ.

From Eqs. (15) it is easy to see that if

θ = 2πm/k, (16)

with k and m integers, we have

Mk = I =
(

1 0
0 1

)
. (17)

This implies that the cascade of k optical systems described by a matrix M with parameters A and
D such that

1
2 (A + D) = cos(2πm/k), (18)

produces the identity transform, and hence M = I1/k . We call these systems cyclic of order k.
Note that, without loss of generality, we may choose 0 ≤ m < k.
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In the special case that m = 1 in Eqs. (16) and (18), we denote the corresponding k-th order
cyclic transfer matrix by Mk ; its parameters follow from Eqs. (10) with θ = 2π/k:

Ak = cos(2π/k) + β sin(2π/k)
Bk = λ2 sin(2π/k)
Ck = −((β2 + 1)/λ2

)
sin(2π/k)

Dk = cos(2π/k) − β sin(2π/k).

(19)

From Eqs. (15) we conclude that the general k-th order cyclic matrix M with θ = 2πm/k, can be
expressed as the m-th power Mm

k of Mk; Mk can thus be considered as the m-th root M1/m of M.
Moreover, the j-th power of M is equal to the l-th power of Mk , where the integers j and l are
related to each other by mj = l + Nk,

M j = Mmj
k = Ml+Nk

k = Ml
k = Ml/m, (20)

and where we have used the property that Mk
k is the identity matrix. We conclude that cascade

properties of any cyclic transform of order k defined by a transfer matrix M can be described by
the matrix Mk = M1/m.

As a first example of a cyclic system, we mention the fractional Fourier transform system for
an angle θ = 2πm/k. Note that the cascade of a finite number of identical fractional FT systems
cannot produce the identity transformation if θ/2π is irrational.

It is well-known that a cascade of k = 4 Fourier transforming systems produces the identity
transformation. We now determine an entire class of canonical systems exhibiting this property.
From Eq. (16) it follows that such systems have the property θ = πm/2. Using Eqs. (10), we
conclude that for even m one gets the inverse or the identity transformation, A = D = ±1 and
B = C = 0, while for odd m the transfer matrix can be expressed as

M =
(

A B
−(A2 + 1)/B −A

)
. (21)

It is easy to see that the case A = 0 and B = 1 corresponds to the Fourier transforming system. In
general the inverse matrix, the identity matrix, and the matrix (21) are the 4-th root of the identity
matrix: M4 = I. The kernel of the GFT parametrized by matrix (21) is written as

KI1/4 (x, u) =
(

1/
√

iB
)

exp
(
iπ
(

A(x2 − u2)− 2xu
)
/B
)
. (22)

Note that the square of the matrix (21) corresponds to the inverse matrix.
Let us consider an optical setup that performs such a transform. A typical optical system

consisting of a thin lens with focal length f (normalized to the wavelength) can be described by
the transfer matrix

M =
(

1− z2/ f z1 + z2 − z1z2/ f
−1/ f 1− z1/ f

)
,

where z1 and z2 are the (normalized) distances from the lens to the input and the output plane,
respectively. Such an optical systems performs a GFT parametrized by a I1/4 matrix (21) if A+
D = 0, which is equivalent to 2 f = z1 + z2. We then have

I1/4 =
(
(z1 − z2)/2 f (z2

1 + z2
2)/2 f

−1/ f −(z1 − z2)/2 f

)
.

In particular for z1 = z2 = f one has a Fourier transforming system. Another choice is z1 = 0
and z2 = 2 f , which yields the matrix

I1/4 =
( −1 2 f
−1/ f 1

)
.
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Let us now construct the class of transforms described by the matrix which is the k-th root of
the Fourier transfer matrix. In this case we have

Mk =
(

0 1
−1 0

)
(23)

and it follows from Eqs. (15) that A = D = cos θ and B = −C = (−1)m sinθ = sin((−1)mθ),
with kθ = (2m + 1)π/2. Note that the similar result was obtained in [15]. In general the
transformation described by the k-th root of the Fourier transfer matrix corresponds to the
fractional FT at the angle θ = (−1)m(2m + 1)π/2k. Due to the periodicity property of the
fractional FT Rθ+2πn = Rθ, the cascades of j ( j = 1, ...,4k) identical systems for different m
produce the same transformations of the input fields corresponding to the fractional FT at the
angles {θ = πj/2k | j = 1, ..., 4k } but taken in a different order. Speaking about angle evolution
of the fractional FT, it is more common to consider consequently increasing angles in the region
[0,2π[. This corresponds to m = 0.

4 Structure and properties of eigenfunctions for cyclic canonical
transforms

As we have seen above, cascade properties of any cyclic transform of order k defined by a transfer
matrix M with 1

2 (A + D) = cos(2πm/k), can be described by the matrix Mk = M1/m. Taking
into account that an eigenfunction for the operator RM is also an eigenfunction for the operator
RM j

and in particular, if mj = 1+ Nk, an eigenfunction of the operator RM1/m
, we can conclude

that the GFTs parametrized by the matrices M and M1/m = Mk have the same eigenfunctions.
Let us find the eigenfunctions for the GFT related with the matrix Mk , whose parameters follow
from Eqs. (19).

A self-GFT function with eigenvalue a = exp(i2πϕ) can be represented as a superposition of
the modes 8n(x) whose indices {n} satisfy the relationship (12)

N + ϕ =−(n + 1
2 )/k, (24)

where ϕ is a constant defining the eigenvalue of this self-GFT function and where N is an integer.
It is easy to see that we have k different sets of modes for which relation (24) holds

n = L+ kl,

where L = 0,1, . . . ,k − 1 and l is an integer. Then a self-GFT function for the matrix (19) with
eigenvalue a = exp

(−i2π(L + 1
2 )/k

)
is defined as

f L
k (u) =

∞∑
l=0

gL+kl8L+kl (u), (25)

where gL+kl are complex constants. This function is also an eigenfunction with eigenvalue a =
exp

(−i2π(L + 1
2 )m/k

)
for the general k-th order cyclic GFT parametrized by the matrix Mm

k for
any integer m.

Let us briefly mention the main properties of the self-GFT functions for cyclic operators which
are similar to the properties of the self-fractional FT functions considered in [22]. As well as in
the case of the self-fractional FT functions, the self-GFT functions for the same operator with
different eigenvalues (i.e., different indices L) are orthogonal to each other, because they are
expanded into disjoint series of the orthogonal modes 8n.
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Since the8n modes form a complete orthogonal set, any function g(u) can be represented as
their superposition

g(u) =
∞∑

n=0

gn8n(u). (26)

Subdividing the series into partial ones

g(u) =
k−1∑
L=0

( ∞∑
l=0

gL+kl8L+kl (u)

)
=

k−1∑
L=0

f L
k (u) (27)

we conclude that any function g(u) can be represented as a linear superposition of k orthogonal
self-GFT functions f L

k (u) of a given cyclic operator of order k. Note that there are many of
cyclic operators of order k, which differ from each other by the parameters λ and β. The
decomposition of the optical image into the set of self-GFT functions can be useful for the analysis
of complex images, their processing through first-order optical systems, in optical testing, and in
the development of filtering devices.

On the other hand, a self-GFT function for the operator RM described by the transfer matrix
(19), can be constructed from any generator function g(x) through the following procedure

f L
k (u) =

1
k

k−1∑
l=0

exp

(
i2π(L + 1

2 )l

k

)
RMl

[g(x)] (u). (28)

An optical configuration for the synthesis of a self-GFT function is similar to the one that was
proposed for the synthesis of self-Fourier functions [23].

Note that self-imaging of the complex field amplitude, being a self-GFT function for the
corresponding cyclic cascade of first-order optical systems, is similar to the Talbot effect where
periodic wavefronts of a certain period are self-reproducible under propagation through a cascade
of identical Fresnel systems.

5 Optical encryption by using cyclic first-order optical systems

The application of optical systems for data security and encryption is a perspective field in
optical engineering [24]. The main advantages of optical encryption are the possibility of parallel
processing of two-dimensional optical signals and the possibility of hiding information in several
wave parameters like amplitude, phase, wavelength, polarization, etc. In this paper we consider
the application of cyclic first-order optical systems for signal encryption.

The method of optical encryption proposed here is based on the signal decomposition into the
set of self-GFT functions. As it follows from Eq. (27), any signal g(u) from L2 can be represented
as a sum of k self-GFT functions f L

k (u). In the limiting case k→∞ we have the generalized
Hermite-Gauss expansion (26).

The encryption procedure of a signal g(u) consists of (i) its decomposition into the set of
k orthogonal self-GFT functions f L

k (u) (L = 0, ..., k − 1), (ii) multiplication of each self-GFT
function by a secret factor aL 6= 0, and (iii) the composition of an encrypted signal G(u) =∑k−1

L=0 aL f L
k (u) from the weighted self-GFT functions aL f L

k (u). The complete procedure is
represented in the following scheme:

g(u) =⇒


f 0
k (u)
...

f L
k (u)
...

f k−1
k (u)

→
→
→
→
→


⊗a0

...

⊗aL

...

⊗ak−1


→
→
→
→
→

a0 f 0
k (u)

...

aL f L
k (u)

...

ak−1 f k−1
k (u)

 =⇒ G(u) (29)
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For convenience, we suppose that the signal g(u) itself is not a self-GFT function for the given
first-order optical system.

The procedure does not change the set of self-GFT functions that compose the initial signal,
but produces only an alteration of their contributions in the composition. The information is
hidden by choosing an order k of self-GFT functions and manipulating with the secret key-factors
aL , which, in general, may be complex. Therefore, for a given cyclic system of order k one gets 2k
keys. The optical set-up introducing the key-factor multiplication consists of a number of constant
amplitude-phase screens, different for every self-GFT function. The encrypted signal can then be
transmitted via a common, unprotected way.

The procedure of decrypting is similar to the encryption procedure as can be seen from the
following scheme

G(u) =⇒


a0 f 0

k (u)
...

aL f L
k (u)

...

ak−1 f k−1
k (u)

→
→
→
→
→


⊗a−1

0
...

⊗a−1
L

...

⊗a−1
k


→
→
→
→
→

f 0
k (u)
...

f L
k (u)
...

f k−1
k (u)


=⇒ g(u) (30)

and is realized using the same optical equipment by only changing the amplitude-phase screens.
Let us demonstrate the method by the simplest example of signal encryption, i.e., its

decomposition in even and odd functions (k = 2), which are the self-fractional Fourier functions.
We suppose that our signal is neither even nor odd; for even or odd signals, a larger-order
encryption procedure k should be applied. The encrypted signal can be written as

G(u) = (g(u)(a0 + a1)+ g(−u)(a0 − a1)) /2,

where a0 6= a1. In accordance with this procedure a real signal g(u) = u/(u + b) transforms to
the signal G(u) = u(ba1 − ua0 )/(b2 − u2), which is, in general, complex (if at least one of the
factors a0 or a1 is complex).

We finally note that the generalization of the encryption procedure to the two-dimensional
case increases information security due to the extension of the number of keys and the possibility
of applying different orders kx and ky for the coordinates x and y.

6 Conclusions

Starting from the analysis of the eigenfunctions of the GFT parametrized by a matrix M, we
have derived the expressions for the k-th power Mk of the transfer matrix describing the cascade
of k GFTs. It has been shown that matrices for which the parameters A and D are such that
arccos(1

2 (A + D)) = 2πm/k, describe cyclic transformations of order k, which means that a
cascade of k such transformations produces the identity transform. It has been found that certain
powers of the cyclic transform correspond to its mth root.

We have derived the general expression for the eigenfunctions for cyclic GFT and have
discussed their main properties. In particular it has been shown that any function (complex field
amplitude) can be represented as a linear superposition of k orthogonal eigenfunctions of a cyclic
GFT of order k. A generation procedure of the GFT eigenfunctions has been proposed.

A method of optical encryption by using cyclic first-order systems has been discussed. It is
based on a signal decomposition into the set of self-GFT functions and changing their coefficients
by multiplying them by the secret codes, which in general are complex numbers. The composition
of these weighted self-GFT functions is an encrypted signal and can be transmitted via a common,
unprotected way. The decrypting procedure is similar to the encrypting one. Both of them can be
realized by using quadratic refractive index optical systems like lenses, mirrors, optical fibers, etc.
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