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Signal reconstruction
from two close fractional Fourier power spectra

Tatiana Alieva,1 Martin J. Bastiaans,∗1 and LJubǐsa Stanković2

Abstract— Based on the definition of the instantaneous
frequency (signal phase derivative) as a local moment of the
Wigner distribution, we derive the relationship between the
instantaneous frequency and the derivative of the squared
modulus of the fractional Fourier transform (fractional
Fourier transform power spectrum) with respect to the angle
parameter. We show that the angular derivative of the frac-
tional power spectrum can be found from the knowledge
of two close fractional power spectra. It permits to find
the instantaneous frequency and to solve the phase retrieval
problem up to a constant phase term, if only two close frac-
tional power spectra are known. The proposed technique
is noniterative and noninterferometric. The efficiency of
the method is demonstrated on several examples including
monocomponent, multicomponent, and noisy signals. It
is shown that the proposed method works well for signal-
to-noise ratios higher than about 3 dB. The appropriate
angular difference of the fractional power spectra used for
phase retrieval depends on the complexity of the signal and
can usually reach several degrees. Other applications of the
angular derivative of the fractional power spectra for signal
analysis are discussed briefly. The proposed technique can
be applied for phase retrieval in optics, where only the frac-
tional power spectra associated with intensity distributions
can be easily measured.

Keywords—Wigner distribution, fractional Fourier trans-
form, time-frequency signal analysis, phase reconstruction

I. Introduction

PHASE retrieval and instantaneous frequency esti-
mation from the distributions associated with the

instantaneous power of the signal, its Fourier power
spectrum, or, more general, its fractional power spectra,
are important problems in signal processing, radio location,
optics, quantum mechanics, etc. In spite of the exis-
tence of several successful iterative algorithms for phase
reconstruction from the squared modulus of the signal and
its power spectrum, or its Fresnel spectrum, that were
proposed recently [1]-[4], the development of noniterative
procedures remains an attractive research topic.

Fractional power spectra, which are the squared moduli
of the fractional Fourier transform (FT) [5], are now a
popular tool in optics and signal processing [5]-[13]. As it
is known, they are equal to the projections of the Wigner
distribution of the signal under consideration [13], [14].
Thus, by using a tomographic approach and the inverse
Radon transform, the Wigner distribution – and therefore
the signal itself, up to a constant phase term – can be
reconstructed if all its projections are known [6], [9]. The
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method is based on the rotation in the time-frequency plane
of the Wigner distribution under fractional Fourier trans-
formation. It demands the measurements of the fractional
FT spectra in the wide angular region [0, π), which is some-
times impossible or very cost consuming [6].

A different approach for phase retrieval, based on the
so-called transport-of-intensity equation in optics, was
proposed by Teague [15] and then further developed in
[16]-[18]. It was shown that the longitudinal derivative
of the Fresnel spectrum is proportional to the transversal
derivative of the product of the instantaneous power and
the instantaneous frequency of the signal.

In this paper we show that a relationship similar to
the transport-of-intensity equation for Fresnel diffraction,
also holds for the fractional Fourier transform system.
We derive that the instantaneous frequency, or the first
derivative of the signal’s phase, at any fractional domain
is determined by the convolution of the angular derivative
of the corresponding fractional power spectrum and the
signum function. Based on this, we propose a new method
for the reconstruction of the signal’s phase from only two
close fractional FT spectra, i.e., only two Wigner distri-
bution projections. Some preliminary results on this topic
were published in [19], [20]. This approach significantly
reduces the need for projections measurements and calcu-
lations. Moreover, it is direct and does not use iter-
ative procedures. Note that the Gerchberg-Saxton algo-
rithm applied in the fractional Fourier domain for phase
retrieval from two fractional FT power spectra for angles
α and α + ∆α becomes unstable, and does not converge if
∆α < 15◦ [1], while our method works especially for small
∆α.

We show that this technique can also be applied for
signal reconstruction from certain projections of other
time-frequency distributions from the Cohen class [21].
The application of the angular derivative of the fractional
power spectrum for signal/image processing is discussed.

The efficiency of the proposed method is illustrated on
several examples. In particular the reconstruction of mono-
component and multicomponent PM signals from several
pairs of close fractional FT power spectra is considered.
The influence of noise and angle difference to the esti-
mation of the angular derivative of the fractional power
spectrum, and to the reconstruction quality is investigated.
Note that the noise robustness was not considered in [1]-
[4], which papers were devoted to the recursive algorithms
for phase retrieval from the fractional FT power spectra.
Signal reconstruction from fractional power spectra taken
in the fractional Fourier domain, where the instantaneous
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power of a signal significantly changes, is considered. We
discuss the reconstruction of the signal with zero-amplitude
region.

The paper is organized as follows. In Section II we
present a review of the definition of the fractional FT, and
the relationship between the fractional FT power spectra
and the ambiguity function of a signal. In Section III
the connection between the instantaneous frequency in a
fractional domain and the angular derivative of the frac-
tional FT power spectra is established. Similar relation-
ships between the projections of Cohen’s class distribu-
tions and the instantaneous frequency are briefly discussed.
Some practical issues with respect to phase retrieval from
two close fractional FT power spectra are discussed in
Section IV. Useful relationships for signal/image analysis,
including the derivatives of fractional spectra, are given in
Section V. In Section VI we discuss the discrete version
of the proposed phase retrieval method. Section VII is
devoted to the demonstration of its efficiency on several
examples. The advantages of the new algorithm and its
possible applications are discussed in the Conclusions.

II. Fractional power spectra and ambiguity

function

The fractional FT of a function x(t) can be written in
the form [5]

Rα[x(t)](u) = Xα(u) =

∫ ∞

−∞

K(α, t, u)x(t)dt, (1)

where the kernel K(α, t, u) , which is a generalized function,
is given by

K(α, t, u) =
exp(j 1

2
α)√

j sin α
exp

[

jπ
(t2 + u2) cos α − 2ut

sin α

]

.

(2)
Thus, for α = 0 and α = π the kernel K(α, t, u) reduces
to the Dirac delta functions δ(x− u) and δ(x + u), respec-
tively; therefore X0(u) = x(u) and Xπ(u) = x(−u). The
fractional FT can be considered as a generalization of
the ordinary FT: for the parameter values α = 1

2
π and

α = − 1

2
π, the transforms Xπ/2(u) and X−π/2(u) corre-

spond to the ordinary forward and inverse FT, respec-
tively. The fractional FT is additive in the parameter
α and periodic with a period 2π. Due to the fact that
the fractional FT corresponds to a rotation of the Wigner
distribution [21]

Wx(t, f) =

∫ ∞

−∞

x(t + 1

2
τ)x∗(t − 1

2
τ) exp(−j2πfτ)dτ, (3)

and the ambiguity function

Ax(τ, ν) =

∫ ∞

−∞

x(t + 1

2
τ)x∗(t − 1

2
τ) exp(−j2πνt)dt, (4)

of the function x(t), the parameter α can be interpreted as
a rotation angle in the phase plane.

It is well known that the fractional power spectra
|Xα(u)|2, i.e., the squared moduli of the fractional FT, are

equal to the projections of the Wigner distribution Wx(t, f)
of the signal x(t):

|Xα(u)|2 =

∫ ∞

−∞

Wx(u cos α − f sin α, u sin α + f cosα)df.

(5)
The set of fractional power spectra in the angular region
[0, π) is also called the Radon-Wigner transform. The
implementation of the inverse Radon transform permits to
reconstruct the Wigner distribution from this set.

Since the ambiguity function Ax(τ, ν) is the two-
dimensional FT of the Wigner distribution Wx(t, f), the
values of the ambiguity function along the line defined by α
are – according to the Radon transform properties – equal
to the FT of the Wigner distribution projection for the
same α [7], [9]:

Ax(R sinα,−R cos α) =

∫ ∞

−∞

|Xα(u)|2 exp(j2πRu)du.

(6)
We can also say that the fractional power spectrum
|Xα(u)|2 is the FT with respect to the radius variable R of
the ambiguity function represented in polar coordinates.

III. Wigner distribution projections and

instantaneous frequencies

In this section we derive that the well-known expression
for the instantaneous frequency f0(t) at the time moment
t [21],

f0(t) =

∫ ∞

−∞

fWx(t, f)df

∫ ∞

−∞

Wx(t, f)df

=
1

2πj

1

|x(t)|2
∫ ∞

−∞

∂Ax(τ, ν)

∂τ

∣

∣

∣

∣

τ=0

exp(j2πtν)dν, (7)

can be written in terms of the fractional power spectra.
Indeed, using the relationship [19]

∂Ax(τ, ν)

∂τ

∣

∣

∣

∣

τ=0

= − 1

ν

∫ ∞

−∞

∂ |Xα(u)|2
∂α

∣

∣

∣

∣

∣

α=0

exp(−j2πνu)du,

(8)
and taking into account that f0(t) assumes real values, we
get

f0(t) =
−1

2π |X0(t)|2
∫ ∞

−∞

dν

∫ ∞

−∞

∂ |Xα(u)|2
∂α

∣

∣

∣

∣

∣

α=0

× sin(2πν(t − u))

ν
du. (9)

Supposing that the derivative of the fractional power
spectra is a continuous function of u, we change the order
of integration. Then we obtain that

f0(t) =
−1

2 |X0(t)|2
∫ ∞

−∞

∂ |Xα(u)|2
∂α

∣

∣

∣

∣

∣

α=0

sgn(t−u)du, (10)
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where sgn(t) is the signum function:

sgn(t) =
2

π

∫ ∞

0

sin(νt)

ν
dν =







1 for t > 0,
0 for t = 0,

−1 for t < 0.
(11)

We thus get for the signal x(t) = |X0(t)| exp[jϕ0(t)], that
its phase derivative ϕ′

0(t) = dϕ0(t)/dt = 2πf0(t) is deter-
mined by the intensity |X0(t)|2 and the convolution of the
signum function with the angular derivative of the frac-
tional power spectrum ∂|Xα(u)|2/∂α at the angle α = 0.

Note that, for a real-valued signal, the angular derivative
of its fractional power spectra equals zero for α = 0. This is
in accordance with the fact that the fractional FT of a real-
valued signal x(t) satisfies the symmetry relation X−α(u) =

X∗
α(u), and thus |X−α(u)|2 = |Xα(u)|2.
Because of the properties of the fractional FT, rela-

tionship (10) can easily be generalized for an arbitrary
angle α 6= 0 to [19]

fβ(r) =
−1

2 |Xβ(r)|2
∫ ∞

−∞

∂ |Xα(u)|2
∂α

∣

∣

∣

∣

∣

α=β

sgn(r − u)du,

(12)
where |Xβ(r)|2 and fβ(r) are the instantaneous power and
the instantaneous frequency of the signal in the fractional
FT domain corresponding to the angle β. We notice that in
general the reconstruction of the instantaneous frequency
has sense if the amplitude is non-zero. So in general we
suppose that |Xβ(r)|2 does not take zero values. Never-
theless as we will show in the Section VII (Example 2)
the instantaneous frequency can be successfully recon-
structed in the intervals limited by the zero-crossings of
the amplitude.

The instantaneous frequency of the signal x(r) = X0(r)
can also be found from close projections pc

α(u) of other
time-frequency distributions from the Cohen class [21]
Cx(t, f) satisfying the generalized marginal property. A
Cohen class distribution is a two-dimensional FT of the
generalized ambiguity function Ac

x(τ, ν) = Ax(τ, ν)c(τ, ν),
where the choice of the function c(τ, ν) depends on the
particular application. According to the Radon transform
properties, we then get [cf. Eq. (6)]

Ax(R sinα,−R cosα)c(R sin α,−R cosα)

=

∫ ∞

−∞

pc
α(u) exp(j2πRu)du, (13)

where

pc
α(u) =

∫ ∞

−∞

∫ ∞

−∞

Cx(t, f)δ(t cos α+f sinα−u)dfdt, (14)

cf. Eq. (5). For distributions satisfying the generalized
marginal property c(R sinβ,−R cos β) = 1 for a certain

angle β [9], we get pc
β(u) = |Xβ(u)|2. Hence, for these

Cohen class distributions we can expect that [cf. Eq. (12)]

fβ(r) =
−1

2 pc
β(r)

∫ ∞

−∞

∂pc
α(u)

∂α

∣

∣

∣

∣

α=β

sgn(r − u)du. (15)

A special and important member of the Cohen class is the
pseudo Wigner distribution, which, as well as the Wigner
distribution itself, is often used in numerical implementa-
tions. For this distribution we have c(τ, ν) = w(τ), where
w(τ) = w∗(−τ) is an appropriately chosen window function
with w(0) = 1. For β → 0 we get c(R sin β,−R cosβ) →
c(0,−R) = w(0) = 1. Therefore, this lag window does
not significantly influence the quality of the signal recon-
struction as long as β is small.

IV. Phase retrieval from two close fractional

FT power spectra

In general, the complex-valued fractional FT Xβ(r) =
|Xβ(r)| exp[jϕβ(r)], and in particular the signal x(t) =
X0(t), can be completely reconstructed (except for a
constant phase shift) from its intensity distribution
|Xβ(r)|2 and its instantaneous frequency fβ(r). Since
dϕβ(r)/dr = 2πfβ(r), the phase ϕβ(r) = 2π

∫ r

C
fβ(ρ)dρ

can be reconstructed up to a constant term. The constant
C produces a phase uncertainty. Since the instantaneous
frequency is determined by the angular derivative of the
fractional power spectra, see Eqs. (10) and (12), this
implies that only two fractional power spectra for close
angles suffice to solve the signal retrieval problem, up to
the constant phase term. Indeed, as it follows from the
Taylor expansion of the fractional power spectrum in the
region where the linear approximation with respect to the
parameter α is valid, we can represent its angular derivative
as

∂ |Xα(u)|2
∂α

∣

∣

∣

∣

∣

α=β

≈ lim
α→0

|Xβ+α(u)|2 − |Xβ−α(u)|2
2α

. (16)

The accuracy of this approximation is O(α2∂3 |Xα(u)|2 /
∂α3

∣

∣

α=β
). Moreover, from the knowledge of two fractional

power spectra |Xβ+α(u)|2 and |Xβ−α(u)|2, the fractional

power spectrum |Xβ(u)|2 can be found as

|Xβ(u)|2 = 1

2

(

|Xβ+α(u)|2 + |Xβ−α(u)|2
)

+ O

(

α2 ∂2 |Xα(u)|2 /∂α2

∣

∣

∣

α=β

)

. (17)

Because x(t) is related to Xβ(r) through the inverse frac-
tional FT, we can conclude that the signal phase can be
reconstructed up to a constant term – in a noniterative
way – from any two fractional power spectra taken for close
angles. The choice of the appropriate angular difference α
depends on the complexity of the signal.

Beside the general importance of the noniterative and
noninterferometric phase reconstruction from intensity
information only, this technique can be applied to filtering
operations. It has been shown that, in some cases, filtering
is more effective in the fractional FT domain than in the
Fourier domain [22]. Thus, for example, filtering of the
linear-PM signal exp(jπct2) can be successfully performed
in the fractional domain for which the angle parameter α
satisfies the condition cosα+ c sin α = 0 [5], see Section V,
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Case 1. Another example [22] is related to the signal–noise
separation in a certain fractional domain.

Often, for example in optics, only information about the
fractional FT spectra is available. Before applying the
proposed signal reconstruction technique, an appropriate
filtering (modification) of the corresponding fractional FT
spectra can be carried out. Certainly, after this oper-
ation the fractional FT spectra have to remain positive-
valued. The simplest modifications of two close fractional
FT spectra is related to the elimination of the undesirable
peaks associated with concentration of linear-PM compo-
nents, or of noise-only regions.

V. Signal analysis and fractional FT power

spectra derivatives

In this section we briefly discuss other problems which
can be solved from the analysis of the derivatives of the
fractional FT power spectrum. This topic becomes espe-
cially important if the signal itself is not known and only
its close fractional FT power spectra (Wigner distribution
projections) are available. Such a situation occurs in optics,
for example, where only intensity distributions related to
the fractional power spectra can easily be measured.

As we have seen, the instantaneous frequency (or
normalized first derivative of the phase) of a signal in the
fractional β domain is related to the angular derivative
of the fractional power spectrum by Eq. (12). Then, by
using the relationship (d/dr) sgn(r) = 2 δ(r), we obtain
the expression for the second derivative of the phase

d2ϕβ(r)

dr2
= − 2

|Xβ(r)|
∂|Xβ(r)|

∂r

dϕβ(r)

dr

− 2π

|Xβ(r)|2
∂ |Xα(r)|2

∂α

∣

∣

∣

∣

∣

α=β

, (18)

which can be written in the more compact form

∂ |Xα(r)|2
∂α

∣

∣

∣

∣

∣

α=β

= − 1

2π

d

dr

[

|Xβ(r)|2 dϕβ(r)

dr

]

. (19)

Note that Eqs. (18) and (19) can be obtained by a direct
differentiation of the fractional power spectrum or from
the nonstationary Schrödinger equation for a harmonic
oscillator, whose propagator is the fractional FT kernel.
This result resembles the so-called transport-of-intensity
equation, which deals with the Fresnel transformation [15]-
[17]. This is not surprising, since both the fractional FT
and the Fresnel transform belong to the class of canonical
integral transforms, and the properties of any member of
this class are related, too.

Although in this paper we consider one-dimensional
signals, the main results can be extended to the multi-
dimensional case. In particular the application of the
two-dimensional, anamorphic fractional FT allows one to
obtain information about the partial derivatives of the

phase. Thus Eq. (19) can be generalized as

∂
∣

∣Xα1,
0(r1, r2)

∣

∣

2

∂α1

∣

∣

∣

∣

∣

α1=β1

= − 1

2π

∂

∂r1

[

|Xβ1,0(r1, r2)|2
∂ϕβ1,0(r1, r2)

∂r1

]

. (20)

Below we assume that at the fractional (β=0)-domain,
some a priori knowledge about the signal behavior is
available. In particular phase modulated and amplitude
modulated signals will be considered.

Case 1. Phase modulated signal: polynomial phase esti-

mation

For phase modulated signals x(r) = A exp[jϕ(r)], where
|x(r)| = A is a constant, relationship (18) reduces to

d2ϕ(r)

dr2
= − 2π

|A|2
∂ |Xα(r)|2

∂α

∣

∣

∣

∣

∣

α=0

, (21)

and the n-th derivative of the phase for n ≥ 2 can be
written as

dnϕ(r)

drn
= − 2π

|A|2
∂n−2

∂rn−2

∂ |Xα(r)|2
∂α

∣

∣

∣

∣

∣

α=0

. (22)

In many applications, such as radar, sonar, and commu-
nications, polynomial phase signals

ϕ(r) =

N
∑

n=0

anrn, (23)

with constant or slowly varying amplitude A, are used as
a model. Then the angular derivative of the fractional FT
spectra can also be represented as a polynomial function:

∂ |Xα(r)|2
∂α

∣

∣

∣

∣

∣

α=0

= −|A|2
2π

N
∑

n=2

n(n − 1)anrn−2. (24)

In this case the coefficients an for n ≥ 2 can be found as
the best fitting to the angular derivative of the fractional
power spectrum, or as

an = − 1

n!

2π

|A|2
∂n−2

∂rn−2

∂ |Xα(r)|2
∂α

∣

∣

∣

∣

∣

α=0,r=0

, (25)

where the first method is more noise-robust. This result
can easily be checked for the quadratic chirp signal x(t) =
exp

(

jπct2
)

, for which the fractional power spectrum
|Xα(r)|2 takes the form | cos α + c sin α|−1, cf. [5]; note
that |Xα(r)|2 is independent of r. Finally we obtain

∂ |Xα(r)|2/∂α|α=0 = −c, and thus a2 = πc.
Although this method does not permit to reconstruct

the coefficients a0 and a1 in the decomposition (23), it
can be useful for the estimation of the higher-order coeffi-
cients because of its relative simplicity. Otherwise the full
algorithm, described in the Sections III and IV has to be
applied.



5

Case 2. Phase modulated signal: edge detection

The application of high-resolution phase spatial light
modulators in optics, which permits the phase of the
optical field ϕ(r) to be proportional to an image g(r),
makes optical image processing more flexible. One of
the important problems of image analysis is the local-
ization of its edges. In spite of the fact that in digital
image processing the diverse algorithms for edge detection
are successfully implemented, not all of them are appro-
priated for optical image processing. Similar to the method
proposed in [23], which is based on Fresnel diffraction, the
positions of the edges can be found as the zero-crossings
of the angular derivative of the fractional power spectrum.
Indeed, for the two-dimensional, phase modulated signal
f(r) = A exp[jϕ(r)] = A exp[jkg(r)], where k controls the
depth of the phase modulation, Eq. (21) can be generalized
as

52ϕ(r) = k 52 g(r) = − 2π

|A|2
∂ |Xα(r)|2

∂α

∣

∣

∣

∣

∣

α=0

, (26)

where 52 stands for the Laplacian operator. The zero-
crossings of the fractional power spectra, ∂|Xα(r)|2/∂α|α=0

= 0, thus correspond to the zero-crossings of 52g(r) and
therefore determine the positions of the image edges.

Case 3. Amplitude modulated signals: extremum point

detection

Let us consider a two dimensional signal x(r) =
A(r) exp(j2πk · r), where k = (k1, k2) is a constant vector
and A(r) > 0. This type of signals in particular arises after
propagation of a plane wave through an amplitude screen
with transmittance function A(r). In this case, it follows
from Eq. (19) that the angular derivative of the fractional
power spectrum is proportional to the positional derivative
of the signal’s intensity

∂ |Xα,0(r)|2
∂α

∣

∣

∣

∣

∣

α=0

= −k1

∂|A(r)|2
∂r1

, (27)

and its zero-crossings thus correspond to the extremum
points of |A(r)|2 and A(r). We believe that this rela-
tionship can be helpful for modelling of early vision systems
where the scratch of the image, i.e., the maxima of A(r),
can be obtained from the knowledge of two close defocussed
images associated with |Xα1,α2

(r)|2.

VI. Discretization of the algorithm

In this section we will discuss the discrete version of
the phase retrieval technique proposed in Section III. We
suppose that two fractional power spectra |Xβ−α(nT )|2
and |Xβ+α(nT )|2 (corresponding to two Wigner distri-
bution projections) at the close angles β − α and β + α,
where α is small (for example α ' 1◦), are known for a set
of equidistant sensor points. The fractional power spectra
|Xβ−α(nT )|2 and |Xβ+α(nT )|2 can be obtained in several
ways: (i) measured in experiments (a simple optical setup

for the measurements of the fractional power spectra was
described in [24]); (ii) calculated as the squared moduli of
the corresponding fractional FT of x(t); and (iii) calculated
as the Radon transform of the Wigner distribution of x(t)
for two angles β ± α.

The discrete version of Eq. (12) for the estimation of the
instantaneous frequency in the fractional β domain, can
then be written in the form

f̂β(nT )

= − 1

2α

[

|Xβ+α(nT )|2 − |Xβ−α(nT )|2
]

∗n sgn(nT )

2 |Xβ(nT )|2 T,

(28)
where T is the discretization step and ∗n denotes a discrete-
time convolution. In order to avoid a separate estimation
of |Xβ(nT )|2, the denominator 2|Xβ(nT )|2 can, at least for
small α, be approximated by |Xβ+α(nT )|2 + |Xβ−α(nT )|2.

The reconstructed signal at the fractional β domain can,
up to the constant phase term, be found as

X̂β(nT ) = |Xβ(nT )| exp

[

j
n

∑

m=−M

2πf̂β(mT )T

]

, (29)

where M is chosen such that fβ(nT ) = 0 for n < −M . In
the case when two fractional FT spectra are taken around
the angle β = 0, X̂0(nT ) = x̂(nT ) corresponds to the
reconstructed version of the original signal. For β 6= 0,
a subsequent discrete version of the fractional FT for the
angle −β has to be applied to X̂β(nT ) in order to recon-
struct the original signal. Several algorithms for the calcu-
lation of the fractional FT have been proposed in [25]-[27].

Below we will illustrate on several numerical examples
how the signal, up to a constant phase term, can be recon-
structed from two close fractional power spectra only, i.e.,
from two Wigner distribution projections. In order to
emphasize the quality of the reconstruction we will also
show the pseudo Wigner distribution of the original and
the reconstructed signal. The pseudo Wigner distribution
is calculated according to its definition

Wx̂(n, k) = 2T

N−1
∑

m=−N

x̂[(n + m)T ]x̂∗[(n − m)T ]

× w(mT ) exp(−j2πmk/N), (30)

where w(nT ) is an appropriately chosen window function,
and the value of N is chosen such that x̂(nT ) ' 0 for
|n| ≥ N .

Note that, by choosing an appropriate window function,
the signal reconstruction can also be achieved from two
close projections of the pseudo Wigner distribution as long
as the angle β is small, see Section III.

VII. Examples

In this section we demonstrate the efficiency of the
proposed algorithm on various examples.
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Example 1: Monocomponent signal with monotonic instan-

taneous frequency

We start with the reconstruction of a monocomponent
signal, whose instantaneous frequency is a monotonic
function. A signal of the form

x(t) = exp[−(2.25t)8]

× exp



j

t
∫

−∞

[360 arctan (20t) + 256π]dt



 ,

is considered inside the time interval |t| ≤ 1/2, with
T = 1/1024. Its pseudo Wigner distribution is calculated,
by using a Hanning window w(t) having a width Tw =
1/8. After the Wigner distribution has been obtained,
we assume that only two of its projections, for angles
α = −1◦ and α = 1◦, sampled at 2N = 1024 points,
are known. Note that these two fractional power spectra,
|Xα(nT )|2 and |X−α(nT )|2 (α = 1◦), can be measured in
an optical system. In our case these two projections are
simulated by using the MATLAB Radon function, taking
the pseudo Wigner distribution matrix as the argument.
The described procedure [cf. Eq. (28] is then used for
the reconstruction of the signal’s instantaneous frequency,
its phase, and the signal itself [Eq. (29)], from these two
projections only.

The original pseudo Wigner distribution is given in
Fig. 1a. Its Radon-Wigner transform |Xα(nT )|2 for angles
α ∈ [0◦, 180◦) [cf. Eq. (5)] is presented in Fig. 1b.

The difference of the two projections, (|Xα(nT )|2 −
|X−α(nT )|2)/2α for α = 1◦, is shown in Fig. 1c. The recon-
structed instantaneous frequency and the reconstructed
phase are given in Figs. 1d and 1e, respectively, by a dash-
dot line, while the original, exact values are represented
by solid lines. We can see that the agreement between the
reconstructed and the original instantaneous frequency is
very high. The phase has a constant shift, as expected.
In order to demonstrate the quality of the signal recon-
struction, the reconstructed pseudo Wigner distribution
calculated according to Eq. (30) is given in Fig. 1f.

Example 2: Monocomponent signal with nonmonotonic

instantaneous frequency

Next, we consider a signal with a nonmonotonic instan-
taneous frequency:

x(t) = exp[−(2.25t)8]{1 − exp[−(20t)20]}

× exp



j

t
∫

−∞

ωi(t)dt



 ,

ωi(t) = 256π + 128πsgn[cos(8πt + π/4)]
√

|cos(8πt + π/4)|.
The peculiarity of this signal is that it has a region with
almost zero amplitude. The discretization parameters are
the same as in Example 1. Figure 2 shows the original
pseudo Wigner distribution, its Radon transform, the

Fig. 1. Monocomponent signal with monotonic instantaneous
frequency and its reconstruction from two close fractional power
spectra: a) Original pseudo Wigner distribution, b) Projections
of the pseudo Wigner distribution (Radon-Wigner transform),
c) Derivative approximation: difference of two close projec-
tions calculated at 1◦ and −1◦, and divided by the angle step,
d) Reconstructed (dash-dot) and original (solid line) instanta-
neous frequency of the signal, e) Reconstructed (dash-dot) and
original (solid line) phase of the signal, f) Reconstructed pseudo

Wigner distribution.

difference of two projections, and the reconstructed instan-
taneous frequency, phase, and pseudo Wigner distribution.
As in the previous example, a high-quality reconstruction
of the instantaneous frequency and phase, outside the zero
amplitude region, is observed. Certainly the phase recon-
struction inside the region of zero amplitude has no sense.
Since this signal can be considered as the concatenation of
two different parts, the reconstructed phase of both parts
is in good agreement with the original one, up to different
constant terms.

Example 3: Multicomponent signal

The reconstruction of a multicomponent signal,

x(t) = exp[−(2.25t)8]

×







exp



j

t
∫

−∞

ω1(t)dt



 + 0.5 exp



j

t
∫

−∞

ω2(t)dt











,

ω1(t) = 128π sin(4tπ) + 256π,

ω2(t) = 512π |t| + 128π,

is considered in this example. Note that the instanta-
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Fig. 2. Monocomponent signal with nonmonotonic instantaneous
frequency and zero-amplitude in its central part, and its recon-
struction from two close fractional power spectra: a) Original
pseudo Wigner distribution, b) Projections of the pseudo Wigner
distribution (Radon-Wigner transform), c) Derivative approxi-
mation: difference of two close projections calculated at 1◦ and
−1◦, and divided by the angle step, d) Reconstructed (dash-dot)
and original (solid line) instantaneous frequency of the signal,
e) Reconstructed phase of the signal, f) Reconstructed pseudo

Wigner distribution.

neous frequency of this signal shows a rather complex form.
Nevertheless, for this multicomponent signal we are still
able to obtain a satisfactory reconstruction of the phase
and the pseudo Wigner distribution, using only two close
fractional power spectra (see Fig. 3). The discretization
parameters are the same as in Example 1 (β = 0, α = 1◦).

Example 4: Reconstruction of a monocomponent signal

from projections around a nonzero angle

In this example we consider the reconstruction of a signal
that is similar to that in Example 1,

x(t) = exp[−(2.25t)8] exp



j

t
∫

−∞

15π sinh−1(100t)dt



 ,

but from two close projections around the angle where
the instantaneous power of the signal changes significantly.
Now we use a wide lag window function, extending over
the entire considered time interval: Tw = 1, corresponding
to 2N = 256 points. This window produces a distribution
which is close to the pure Wigner distribution, without
the attribute pseudo. The signal discretization parameters
and the window size in this example are such that the
number of points along the time and the frequency axes

Fig. 3. Multicomponent signal and its reconstruction from two close
fractional power spectra: a) Original pseudo Wigner distribution,
b) Projections of the pseudo Wigner distribution (Radon-Wigner
transform), c) Derivative approximation: difference of two close
projections calculated at 1◦ and −1◦, and divided by the angle
step, d) Reconstructed pseudo Wigner distribution.

is the same; i.e., the Wigner distribution in discrete form
is a square matrix. We now reconstruct the signal in the
fractional domain for the angle β = −45◦, with α = 1◦,
which implies that the reconstructed signal is the fractional
Fourier transform of the original signal for β = −45◦. The
original signal can easily be obtained as an inverse frac-
tional Fourier transform for the same angle. Comparing
Figs. 4a and 4d, one can observe a high quality of the signal
reconstruction. Indeed, the last figure (4d) is the rotated
version of the WD reconstructed from two close projections
around the angle β = −45◦.

Example 5: Influence of the angle difference on the recon-

struction quality

The signal from the previous example is used for
the numerical illustration of the influence of the angle
difference α in Eq. (28). The reconstructions are performed
from the projections around β = 0◦ for three values of α:
α = 1◦, α = 10◦, and α = 20◦ (see Fig. 5). We can see that,
near the end points, a deviation in the reconstructed distri-
bution and the instantaneous frequency exists for α = 10◦,
and that this deviation is very emphatic for α = 20◦. The
accuracy of reconstruction also depends on the complexity
of the fractional amplitude |Xβ±α(nT )|2 in Eq. (28). From
this illustration, and other similar numerical experiments
with various signals, we have concluded that values of α in
the order of 1◦, up to a few degrees, produce satisfactory
numerical results.

Example 6: Noisy signal

The reconstruction algorithm is tested for noisy cases,
as well. The signal from Example 1, contaminated by
Gaussian, complex-valued, white noise ν(t)

x(t) = exp[−(2.25t)8]
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Fig. 4. Monocomponent signal with monotonic instantaneous
frequency and its reconstruction from two close fractional power
spectra around the angle β = −45◦: a) Original Wigner distri-
bution, b) Derivative approximation: difference of two close
projections calculated at 1◦ and −1◦, and divided by the angle
step, c) Reconstructed instantaneous frequency of the signal,
d) Reconstructed Wigner distribution.

×







A exp



j

t
∫

−∞

[360 arctan (20t) + 256π]dt



 + ν(t)







,

is considered. Various values of the local signal-to-noise
ratio SNR = 20 log(A/σν) have been used in simula-
tions. Figure 6 presents the reconstruction result for a
SNR=10 dB. Small deviations of the reconstructed distri-
bution can be seen in this case. From numerous calcula-
tions, we have concluded that the reconstruction threshold
is at about SNR = 3 dB. Below this value, the degradation
of the reconstructed distribution is significant. Never-
theless, it seems that for signal reconstruction in a very
high noise, the knowledge of several pairs of close projec-
tions would improve the results. In that case we can
calculate the differences of the fractional power spectra for
several small angles and then average them. Furthermore,
using other discrete differentiators, different from the
simple one given by a mere difference, would also improve
noisy case results. However, since the original algorithm
produces a satisfactory reconstruction, even for as low a
SNR as a few dB, we have not implemented this variation
of the algorithm, for now.

Note that the original noisy distribution, Fig. 6a, and
the reconstructed distribution, Fig. 6f, slightly differ. The
noise in the original distribution is additive, while the
reconstructed distribution is obtained from the estimated
noisy instantaneous frequency and reconstructed noisy
amplitude. Due to extremely fast variations of the noise,
some mismatching between the variations in the amplitude
and the instantaneous frequency can exist, and cause a
slightly different behavior of these distributions. It is more
and more exhibited for lower SNR values, and below about
3 dB, the algorithm stops to produce satisfactory results.

Fig. 5. Monocomponent signal with monotonic instantaneous
frequency and its reconstruction from two close fractional power
spectra for various angle differences in the derivative approx-
imation. Reconstructed instantaneous frequency and recon-
structed Wigner distribution for: a) α = 1◦, b) α = 10◦,
c) α = 20◦.

VIII. Conclusions

In this paper we have established the relation between
the angular derivative of the fractional power spectra
and the instantaneous frequency, and we have proposed a
method of phase reconstruction from only two close projec-
tions of the Wigner distribution. The numerical simula-
tions show that the discussed phase retrieval algorithm
produces good results for several types of signals. The
reconstruction technique works well for a signal-to-noise
ratio as low as about 3 dB. The main advantages of the
proposed method are that it is noniterative and demands a
minimum number of initial data – only two close fractional
FT power spectra – which are related to easily measurable
power distributions. In optics and quantum mechanics,
for instance, the fractional FT spectrum corresponds to
the intensity distribution and the probability distribution,
respectively.

We have also briefly discussed the possible applications of
the angular derivatives of the fractional FT power spectra
for signal processing, time-varying filtering, edge detection,
etc. It becomes especially attractive if only the fractional
spectra of a signal are known.
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Fig. 6. Noisy signal (SNR = 10 dB) and its reconstruction from
two close fractional power spectra: a) Original Wigner distri-
bution, b) Projections of the Wigner distribution (Radon-Wigner
transform), c) Derivative approximation: difference of two close
projections calculated at 1◦ and −1◦, and divided by the angle
step, d) Reconstructed (dash-dot) and original (solid line) instan-
taneous frequency of the signal, e) Reconstructed (dash-dot) and
original (solid line) phase of the signal, f) Reconstructed Wigner
distribution.

References

[1] Z. Zalevsky, D. Mendlovic, and R. G. Dorsch, “Gerchberg-
Saxton algorithm applied in the fractional Fourier or the Fresnel
domain,” Opt. Lett., vol. 21, pp. 842–844, 1996.

[2] H. M. Ozaktas, Z. Zalevsky, and M. A. Kutay, The Fractional
Fourier Transform, Wiley, 2001.

[3] W. X. Cong, N. X. Chen, and B. Y. Gu, “Recursive algorithm
for phase retrieval in the fractional Fourier-transform domain,”
Appl. Opt., vol. 37, pp. 6906–6910, 1998.

[4] W. X. Cong, N. X. Chen, and B. Y. Gu, “Phase retrieval in the
Fresnel transform system – a recursive algorithm,” J. Opt. Soc.
Am. A, vol. 16, pp. 1827–1830, 1999.

[5] L. B. Almeida, “The fractional Fourier transform and time-
frequency representations,” IEEE Trans. Signal Process.,
vol. 42, pp. 3084–3091, 1994.

[6] M. G. Raymer, M. Beck, and D. F. McAlister, “Complex wave-
field reconstruction using phase-space tomography,” Phys. Rev.
Lett., vol. 72, pp. 1137–1140, 1994.

[7] J. Tu and S. Tamura, “Analytic relation for recovering the
mutual intensity by means of intensity information,” J. Opt.
Soc. Am. A, vol. 15, pp. 202–206, 1998.

[8] H. M. Ozaktas, N. Erkaya, and M. A. Kutay, “Effect of frac-
tional Fourier transformation on time-frequency distributions
belonging to the Cohen class,” IEEE Signal Process. Lett., vol. 3,
pp. 40–41, 1996.

[9] X.-G. Xia, Y. Owechko, B. H. Soffer, and R. M. Matic,
“Generalized-marginal time-frequency distributions,” Proc.
IEEE-SP International Symposium on Time-Frequency and
Time-Scale Analysis, pp. 509–512, 1996.

[10] O. Akay and G. F. Boudreaux-Bartels, “Joint fractional repre-
sentations,” Proc. IEEE-SP International Symposium on Time-
Frequency and Time-Scale Analysis, pp. 417–420, 1998.

[11] B. Ristic and B. Boashash, “Kernel design for time-frequency

signal analysis using the Radon transform,” IEEE Trans. Signal
Process., vol. 41, pp. 1996–2008, 1993.

[12] J. C. Wood and D. T. Barry, “Tomographic time-frequency
analysis and its application toward time-varying filtering and
adaptive kernel design for multicomponent linear-FM signals,”
IEEE Trans. Signal Process., vol. 42, pp. 2094–2104, 1994.

[13] J. C. Wood and D. T. Barry, “Radon transformation of time-
frequency distributions for analysis of multicomponent signals,”
IEEE Trans. Signal Process., vol. 42, pp. 3166–3177, 1994.

[14] A. W. Lohmann and B. H. Soffer, “Relationships between
the Radon-Wigner and fractional Fourier transforms,” J. Opt.
Soc.Am. A, vol. 11, pp. 1798–1801, 1994.

[15] M. R. Teague, “Deterministic phase retrieval: a Green function
solution,” J. Opt. Soc. Am., vol. 73, pp. 1434–1441, 1983.

[16] N. Streibl, “Phase imaging by the transport equation of
intensity,” Opt. Commun., vol. 49, pp. 6–10, 1984.

[17] K. Ichikawa, A. W. Lohmann, and M. Takeda, “Phase retrieval
based on the Fourier transport method: experiments,” Appl.
Opt., vol. 27, pp. 3433–3436, 1988.

[18] T. E. Gureev, A. Roberts, and K. A. Nugent, “Partially
coherent fields, the transport-of-intensity equation, and phase
uniqueness,” J. Opt. Soc. Am. A, vol. 12, pp. 1942–1946, 1995.

[19] T. Alieva and M. J. Bastiaans, “On fractional Fourier transform
moments,” IEEE Signal Process. Lett., vol. 7, pp. 320–323, 2000.

[20] T. Alieva, M. J. Bastiaans and LJ. Stanković, “Wigner distri-
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